1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ivann1987 [24]
3 years ago
9

A piece of aluminum has a volume of 1.50 10-3 m3. the coefficient of volume expansion for aluminum is β = 69 ✕ 10-6 (°c)-1. the

temperature of this object is raised from 22 to 320°c. how much work is done by the expanding aluminum if the air pressure is 1.01 ✕ 105 pa? j
Physics
1 answer:
Alex17521 [72]3 years ago
4 0

Answer:

W = 3.12 J

Explanation:

Given the volume is 1.50*10^-3  m^3 and the coefficient of volume for aluminum is β = 69*10^-6 (°C)^-1. The temperature rises from 22°C to 320°C. The difference in temperature is 320 - 22 = 298°C, so ΔT = 298°C. To reiterate our known values we have:

β = 69*10^-6 (°C)^-1       V = 1.50*10^-3  m^3       ΔT = 298°C

So we can plug into the thermal expansion equation to find ΔV which is how much the volume expanded (I'll use d instead of Δ because of format):

dV = \beta V_{0} dT\\dV = (69*10^{-6})( C)^{-1} * (1.50*10^{-3})m^{3} * (298)C\\dV = 3.0843*10^-5

So ΔV = 3.0843*10^-5 m^3

Now we have ΔV, next we have to solve for the work done by thermal expansion. The air pressure is 1.01 * 10^5 Pa

To get work, multiply the air pressure and the volume change.

W = P * dV = (1.01 * 10^5)Pa * (3.0843*10^{-5})m^3\\W = 3.115143J

W = 3.12 J

Hope this helps!

You might be interested in
A beam of light traveling through a liquid (of index of refraction n1 = 1.47) is incident on a surface at an angle of θ1 = 59° w
frosja888 [35]

Answer:

(a) n_{2} = \frac{n_{1}sin\theta_{1}}{sin\theta_{2}}

(b) n_{2} = 1.349

(c) v_{1} = 2.04\times 10^{8}\ m/s

(d) v_{2} = 2.22\times 10^{8}\ m/s

Solution:

As per the question:

Refractive index of medium 1, n_{1} = 1.47

Angle of refraction for medium 1, \theta_{1} = 59^{\circ}

Angle of refraction for medium 2, \theta_{1} = 69^{\circ}

Now,

(a) The expression for the refractive index of medium 2 is given by using Snell's law:

n_{1}sin\theta_{1} = n_{2}sin\theta_{2}

where

n_{2} = Refractive Index of medium 2

Now,

n_{2} = \frac{n_{1}sin\theta_{1}}{sin\theta_{2}}

(b) The refractive index of medium 2 can be calculated by using the expression in part (a) as:

n_{2} = \frac{1.47\times sin59^{\circ}}{sin69^{\circ}}

n_{2} = 1.349

(c) To calculate the velocity of light in medium 1:

We know that:

Refractive\ index,\ n = \frac{Speed\ of\ light\ in vacuum,\ c}{Speed\ of\ light\ in\ medium,\ v}

Thus for medium 1

n_{1} = \frac{c}{v_{1}

v_{1} = \frac{c}{n_{1} = \frac{3\times 10^{8}}{1.47} = 2.04\times 10^{8}\ m/s

(d) To calculate the velocity of light in medium 2:

For medium 2:

n_{2} = \frac{c}{v_{2}

v_{2} = \frac{c}{n_{1} = \frac{3\times 10^{8}}{1.349} = 2.22\times 10^{8}\ m/s

5 0
3 years ago
Read 2 more answers
A container in the shape of a cube 10.0 cm on each edge contains air (with equivalent molar mass 28.9 g/mol) at atmospheric pres
Vikentia [17]

Answer:

a) m = 1.174 grams

b) F_g = 0.01151 N

c) F_c = 1013 N

Explanation:

Given:

- The length of a cube L = 10.0 cm

- The molar mass of air M = 28.9 g/mol

- Pressure of air P = 101.3 KPa

- Temperature of air T = 300 K

- Universal Gas constant R = 8.314 J/kgK

Find:

(a) the mass of the gas

(b) the gravitational force exerted on it

(c) the force it exerts on each face of the cube

(d) Why does such a small sample exert such a great force? (6%)

Solution:

- Compute the volume of the cube:

                               V = L^3  = 0.1^3 = 0.001 m^3

- Use Ideal gas law equation and compute number of moles of air n:

                               P*V = n*R*T

                                n = P*V / R*T

                                n = 101.3*10^3 * 0.001 / 8.314*300

                                n = 0.04061 moles

- Compute the mass of the gas:

                                m = n*M

                                m = 0.04061*28.9

                                m = 1.174 grams

- The gravitational force exerted on the mass of gas is due to its weight:

                                F_g = m*g

                                F_g = 1.174*9.81*10^-3

                               F_g = 0.01151 N

- The force exerted on each face of cube is due its surface area:

                                F_c = P*A

                                F_c = (101.3*10^3)*(0.1)^2

                                F_c = 1013 N

- The molecules of a gas have high kinetic energy; hence, high momentum. When they collide with the walls they transfer momentum per unit time as force. Higher the velocity of the particles higher the momentum higher the force exerted.

4 0
3 years ago
Four football players are running down the field at the same speed. Player 1 weighs 180 lbs and is running toward the south goal
ANTONII [103]
Player 4 ..................
3 0
3 years ago
Read 2 more answers
You throw a bouncy rubber ball and a wet lump of clay, both of mass m, at a wall. Both strike the wall at speed v, but while the
lana [24]

Answer:

<em>The fifth option is the correct answer: mv; 2 mv</em>

Explanation:

<u>Change of Momentum</u>

Assume an object has a momentum p1 and after some interaction it now has a momentum p2, the change of momentum is

\Delta p=p_2-p_1

The momentum is computed as

p=mv

Where m is the mass of the object and v its speed. Now let's analyze the situation of both the ball and the clay.

The clay has an initial speed v and a mass m, thus its initial momentum is

p_1=mv

When it hits the wall, it sticks, thus its final speed is 0 and

p_2=0

The change of momentum is

\Delta p=0-mv=-mv

The absolute change is mv

Now for the ball, the initial condition is the same as it was for the clay, but the ball hits back at the same speed, thus its final momentum is

p_2=-mv

The change of momentum is

\Delta p=-mv-mv=-2mv

The absolute change is 2mv

The fifth option is the correct answer: mv; 2 mv

3 0
4 years ago
You forgot to put what IRITONCF is unscrambled
Lesechka [4]
I'm Pretty sure it's FRICTION
4 0
3 years ago
Other questions:
  • A small airplane is sitting at rest on the ground. Its center of gravity is 2.58 m behind the nose of the airplane, the front wh
    15·1 answer
  • A weight lifter is trying to lift a 1500-N weight but can apply a force of only 1200 N on the weight. One of his friends helps h
    10·1 answer
  • A bungee jumper with mass 65.0 kg jumps from a high bridge. After reaching his lowest point, he oscillates up and down, hitting
    14·1 answer
  • classic physics problem states that if a projectile is shot vertically up into the air with an initial velocity of 128 feet per
    8·1 answer
  • Question 8 of 10
    13·1 answer
  • A student starts from the hostel and goes to his friend's house and then to his school. A is the displacement vector from the ho
    14·1 answer
  • If element "X" is heavier than element "Y" then...
    12·1 answer
  • f the pressure of a sample of gas is doubled at constant temperature, what happens to the volume of the gas?
    15·1 answer
  • help plz! what vibrates in following types of wave motion 1)light wave 2)sound waves 3)x-rays 4)water waves​
    14·1 answer
  • A 2kg water balloon is flying at a rate of 4m/s^2. With what force will it hit its target?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!