Answer:
9.36*10^11 m
Explanation
Orbital velocity v=√{(G*M)/R},
G = gravitational constant =6.67*10^-11 m³ kg⁻¹ s⁻²,
M = mass of the star
R =distance from the planet to the star.
v=ωR, with ω as the angular velocity and R the radius
ωR=√{(G*M)/R},
ω=2π/T,
T = orbital period of the planet
To get R we write the formula by making R the subject of the equation
(2π/T)*R=√{(G*M)/R}
{(2π/T)*R}²=[√{(G*M)/R}]²,
(4π²/T²)*R²=(G*M)/R,
(4π²/T²)*R³=G*M,
R³=(G*M*T²)/4π²,
R=∛{(G*M*T²)/4π²},
Substitute values
R=9.36*10^11 m
Answer:
B, he will fly off the other end
Explanation:
there is too much potential energy that transforms into kinetic energy for him to stay on the track.
Answer:
2 h
Explanation:
Velocity =Distance/time ⇒ time = distance/speed
= 1440/720
= 2 h
The speed of a wave depends on the medium :)