Sure I can be your friend do you play video games
Answer:
Notice how all the cells seem to stack on each other, with no spaces in ... and pancreas, which work together to carry out a certain function (in this case, ... Structures found in plant cells but not animal cells include a large central vacuole, cell wall, ... It consists mainly of cellulose and may also contain lignin , which makes it ...
Explanation:
Answer:
23.0 s
Explanation:
Given:
v₀ = 0 m/s
v = 19.8 m/s
a = 4.80 m/s²
Find: Δx and t
v² = v₀² + 2aΔx
(19.8 m/s)² = (0 m/s)² + 2 (4.80 m/s²) Δx
Δx = 40.84 m
v = at + v₀
19.8 m/s = (4.80 m/s²) t + 0 m/s
t = 4.125 s
The elevator takes 40.84 m and 4.125 s to accelerate, and therefore also 40.84 m and 4.125 s to decelerate.
That leaves 291.3 m to travel at top speed. The time it takes is:
291.3 m / (19.8 m/s) = 14.71 s
The total time is 4.125 s + 14.71 s + 4.125 s = 23.0 s.
Somewhere in your book or your notes, you must have met the formula for the
gravitational attraction between two bodies. If you can go back and find it, you
only need to plug your numbers into that formula, and out will pop the answer.
Formula: <u>Force = G (mA x mB) / (distance)²</u>
If everything is in SI units, then G = 6.67 x10⁻¹¹ newton-meter² / kilogram²
You said that
mA = 8.1 kg
mB = 6.5 kg
distance = 0.5 m .
Force = (6.67 x 10⁻¹¹ nt-m²/kg²) (8.1kg x 6.5kg / (0.5m)² =
(6.67 x 10⁻¹¹ nt-m²/kg²) ( 52.65 kg² ) / (0.25 m²) =
<em>1.4047 x 10⁻⁸ newtons .</em>
That's roughly 5.052 x 10⁻⁸ ounce . (5% of one micro-ounce)
Answer:
The current at time t = 4.00 s is 0.766 A.
Explanation:
Given that,
The quantity of charge through a conductor is modeled as :

We need to find the current (in A) at time t = 4.00 s. We know that the rate of change of electric charge is called electric current. It is given by :

At t = 4 s

So, the current at time t = 4.00 s is 0.766 A. Hence, this is the required solution.