no it can't do this why because I think that it is water and it can not go any where.
The total circuit current at the resonant frequency is 0.61 amps
What is a LC Circuit?
- A capacitor and an inductor, denoted by the letters "C" and "L," respectively, make up an LC circuit, also referred to as a tank circuit, a tuned circuit, or a resonant circuit.
- These circuits are used to create signals at particular frequencies or to receive signals from more complicated signals at particular frequencies.
Q =15 = (wL)/R
wL = 30 ohms = Xl
R = 2 ohms
Zs = R + jXl = 2 +j30 ohms where Zs is the series LR impedance
| Zs | = 30.07 <86.2° ohms
Xc = 1/(wC) = 30 ohms
The impedance of the LC circuit is found from:
Zp = (Zs)(-jXc)/( Zs -jXc)
Zp = (2+j30)(-j30)/(2 + j30-j30) = (900 -j60)2 = 450 -j30 = 451 < -3.81°
I capacitor = 277/-j30 = j9.23 amps
I Zs = 277/(2 +j30) = (554 - j8,310)/904 = 0.61 - j9.19 amps
I net = I cap + I Zs = 0.61 + j0.04 amps = 0.61 < 3.75° amps
Hence, the total circuit current at the resonant frequency is 0.61 amps
To learn more about LC Circuit from the given link
brainly.com/question/29383434
#SPJ4
Answer:
10 m/s^2
Explanation:
Equation: F = ma.
a = acceleration
m = mass
F = force
Because we are trying to find acceleration instead of force we want to rearrange the equation to solve for a which is F/m = a.
F = 20
m = 2
a = ?
a = F/m
a = 20/2
a = 10 m/s^2
Answer:
0 N
Explanation:
Applying,
F = qvBsin∅................. Equation 1
Where F = Force on the charge, q = charge, v = Velocity, B = magnetic charge, ∅ = angle between the velocity and the magnetic field.
From the question,
Given: q = 4.88×10⁻⁶ C, v = 265 m/s, B = 0.0579 T, ∅ = 0°
Substitute these values into equation 1
F = ( 4.88×10⁻⁶)(265)(0.0579)(sin0)
Since sin0° = 0,
Therefore,
F = 0 N
If the bubble travels 10 meters per second and it takes 10 seconds, then just multiply the distance per second by the total seconds to get the total depth.
10 • 10 = 100
The lake is 100 meters deep.
Think of it this way to clarify the answer:
It takes a bubble traveling at a speed of 10 meters per second 10 seconds to travel 100 meters.