1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
artcher [175]
2 years ago
14

When a flat slab of transparent material is placed under water, the critical angle for light traveling from the slab into water

is found to be 60°. What will the critical angle be if the slab is surrounded by air? Take the index of refraction for water to be 1.33. d) 45.6 c) 44.2 e) 47.3 a) 40.6 b) 42.5
Physics
1 answer:
Novosadov [1.4K]2 years ago
3 0

Answer:

(a) 40.6 degree

Explanation:

When refraction takes place from slab to water, the critical angle is 60 degree.

Use Snell's law

refractive index of water with respect to slab

\mu _{w}^{s}=\frac{Sin60}{Sin90}

\frac{\mu _{w}}{\mu _{s}}=0.866

\frac{1.33}{\mu _{s}}=0.866

μs = 1.536

Now for slab air interface, the critical angle is C.

\mu _{a}^{s}=\frac{SinC}{Sin90}

\frac{\mu _{a}}{\mu _{s}}=\frac{SinC}{Sin90}

1 / 1.536 = Sin C

C = 40.6 degree

You might be interested in
The current theory of the structure of the
Mariana [72]

Answers:

a) 2.82(10)^{21} kg

b) 1410 J

c) 36.62 m/s

Explanation:

<h3>a) Mass of the continent</h3>

Density \rho  is defined as a relation between mass m and volume V:

\rho=\frac{m}{V} (1)

Where:

\rho=2720 kg/m^{3} is the average density of the continent

m is the mass of the continent

V is the volume of the continent, which can be estimated is we assume it as a a slab of rock 5300 km on a side and 37 km deep:

V=(length)(width)(depth)=(5300 km)(5300 km)(37 km)=1,030,330,000 km^{3} \frac{(1000 m)^{3}}{1 km^{3}}=1.03933(10)^{18} m^{3}

Finding the mass:

m=\rho V (2)

m=(2720 kg/m^{3})(1.03933(10)^{18} m^{3}) (3)

m=2.82(10)^{21} kg (4) This is the mass of the continent

<h3>b) Kinetic energy of the continent</h3>

Kinetic energy K is given by the following equation:

K=\frac{1}{2}mv^{2} (5)

Where:

m=2.82(10)^{21} kg is the mass of the continent

v=4.8 \frac{cm}{year} \frac{1 m}{100 cm} \frac{1 year}{365 days} \frac{1 day}{24 hours} \frac{1 hour}{3600 s}=1(10)^{-9} m/s is the velocity of the continent

K=\frac{1}{2}(2.82(10)^{21} kg)(1(10)^{-9} m/s)^{2} (6)

K=1410 J (7) This is the kinetic energy of the continent

<h3>c) Speed of the jogger</h3>

If we have a jogger with mass m=77 kg and the same kinetic energy as that of the continent 1413 J, we can find its velocity by isolating v from (5):

v=\sqrt{\frac{2 K}{m}} (6)

v=\sqrt{\frac{2 (1413 J)}{77 kg}}

Finally:

v=36.62 m/s This is the speed of the jogger

5 0
3 years ago
During a cross-country flight you picked up rime icing which you estimate is 1/2" thick on the leading edge of the wings. You ar
igor_vitrenko [27]

Answer:

Use a faster than normal approach and landing speed.

Explanation

For pilots, it is one of the critical moments of the flight that concentrates 12% of fatal accidents. The main difficulty lies in reaching enough speed to take flight within the space of the runway. At present, it ceased to be a challenge for the aircraft, since the engine power improved, so the takeoff ceased to be the most dangerous moment of the flight.

One of the risks that aircraft face today is that some of the engines fail while the plane accelerates. In that case, the pilot must decide in an instant whether it is better to take flight and solve the problem in the air or if it is preferable not to take off.

Although for many staying on the ground might seem the most sensible option, it is not as simple as it seems: to suddenly decelerate an aircraft, with the weight it has and the speed it reaches can cause accidents. However, today a special cement was designed that runs around the runways of the airports, which when coming into contact with the wheels of the aircraft the ground breaks and helps to slow down.

6 0
3 years ago
The height of the Washington Monument is measured to be 170 m on a day when its temperature is 35.0°C. What will the change in i
Alecsey [184]

Answer:

The deformation is 0.088289 m

The final height of the monument is 170-0.088289 = 169.911702 m

Explanation:

Thermal coefficient of marble varies between (5.5 - 14.1) ×10⁻⁶/K = α

So, let us take the average value

(5.5+14.1)/2 = 9.8×10⁻⁶ /K

Change in temperature = 35-(-18) = 53 K = ΔT

Original length = 170 m = L

Linear thermal expansion

\frac{\Delta L}{L} = \alpha\Delta T\\\Rightarrow \Delta L=\frac{\alpha\Delta T}{L}\\\Rightarrow \Delta L=9.8\times 10^{-6}\times 53\times 170

The deformation is 0.088289 m

The final height of the monument is 170-0.088289 = 169.911702 m (subtraction because of cooling)

4 0
3 years ago
Back in their laboratory, the team of scientists carefully measure the changes in density of a freshwater sample as they decreas
BabaBlast [244]

Answer: As the temperature of the water decreases from 20 degrees celsius to 4 degrees celsius, the density increases.

Explanation:

7 0
2 years ago
Read 2 more answers
Will mark as brainliest if correct!!!!!!!
lutik1710 [3]

C. A could be ruby (speed of light = 170,000 km/s); B could be diamond (speed of light = 120,000 km/s).

Explanation:

Refraction is a phenomenon that occurs when a light rays crosses the boundary between two different mediums.

When this occurs, the light wave changes speed and also direction, according to Snell's law:

n_1 sin \theta_1 = n_2 sin \theta_2 (1)

where

n_1 is the index of refraction of the first medium

n_2 is the index of refraction of the second medium

\theta_1 is the angle of incidence (the angle between the incident ray and the normal to the boundary)

\theta_2 is the angle of refraction (the angle between the refracted ray and the normal to the boundary)

The index of refraction is the ratio between the speed of light in a vacuum (c) and the speed of light in the medium (v):

n=\frac{c}{v}

Using this definition, we can rewrite eq.(1) as

\frac{\sin \theta_2}{\sin \theta_1} = \frac{v_2}{v_1}

Where v_2 is the speed of light in the 2nd medium and v_1 the speed of light in the 1st medium.

Now let's analyze the situation represented in the figure: we see that as the light ray enters the 2nd medium, it bends towards the normal, this means that the angle of refraction is smaller than the angle of incidence:

\theta_2 < \theta_1

This means that

\frac{\sin \theta_2}{\sin \theta_1}

And therefore,

\frac{v_2}{v_1}

So, the speed of light in the second medium is smaller than the speed of light in the first medium: this occurs only in option C), which is therefore the correct choice.

Learn more about refraction:

brainly.com/question/3183125

brainly.com/question/12370040

#LearnwithBrainly

6 0
3 years ago
Other questions:
  • For the following reaction, 24.8 grams of diphosphorus pentoxide are allowed to react with 13.2 grams of water . diphosphorus pe
    8·1 answer
  • At an air show, Julia saw a fighter jet fly by. Three seconds later she heard the sonic boom of the sound barrier being broken.
    11·2 answers
  • A force is applied to an object at rest with a mass of 100kg. A force twice as large is applied to another object at rest with a
    15·1 answer
  • A 60.0-kg ball of clay is tossed vertically in the air with an initial speed of 4.60 m/s. Ignoring air resistance, what is the c
    9·1 answer
  • Would u have to add Fe or can someone walk me thru this
    14·1 answer
  • 21. If the Sun's rays were at 45° to a vertical pillar, how would
    9·1 answer
  • true or false. because the speed of an object can change from one instant to the next, dividing the distance covered by the time
    15·2 answers
  • Can someone help me?
    15·1 answer
  • All organisms need glucose or a source of
    15·1 answer
  • Which object has the most Kinetic Energy, and why?
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!