The variables which are involved in understanding Kepler's third law of
motion are
<h3 /><h3>What is Kepler's third law of motion?</h3>
Kepler's third law of motion states that the the square of the orbital period of
a planet is proportional to the cube of the semi-major axis of its orbit. He
also inferred that the greater the distance, the slower the orbital velocity.
This thereby makes option D the most appropriate option as it contains the
orbital velocity and distance to sun variables.
Read more about Kepler's third law of motion here brainly.com/question/777046
Answer:
Space radiation is made up of three kinds of radiation: particles trapped in the Earth's magnetic field; particles shot into space during solar flares (solar particle events); and galactic cosmic rays, which are high-energy protons and heavy ions from outside our solar system.
Explanation:
Answer:
The incidence rate is typically expressed as the number of cases per person-year of observation. Only new cases are considered when computing the incidence rate, while cases that were diagnosed earlier are excluded. The “population at risk” measure is usually obtained from census data.
Explanation:
The incidence rate is typically expressed as the number of cases per person-year of observation. Only new cases are considered when computing the incidence rate, while cases that were diagnosed earlier are excluded. The “population at risk” measure is usually obtained from census data.
Answer:
The conduction path or simply the wires connected between different components in a circuit.
Explanation:
The wire makes up the path for the electricity to flow and most of the electricity flows through this. It is like a road connecting two house or buildings in a town and the traffic of vehicles is the electricity (current).
Answer:
See Explanation
Explanation:
The question is incomplete, as there are no diagrams or options to provide more information to the question.
The general explanation is as follows:
For the object not to move
(1): The forces acting on the object must opposite each other. i.e. if force A acts at the right (or positive direction), force B will act at the left (or negative direction).
(2) The two forces must be equal.
So, for instance:
If the pair of forces are 5N and 5N in opposite directions, the object wil not move.
However, if one of the forces is greater, the object will move towards the direction of the greater force.