Answer:
λ = 470.66 nm
Explanation:
for bright fringe
D= distance between slit and screen
d= distance between the slits
for first order bright fringe m = 1,


for dark fringe,we have
Now to get the dark fringes at the same location we should have;
(706)D/d = (m + 1/2)λD/d
put m = 1
(1 + 1/2)λ = (706)
λ = 470.66 nm
Answer:
The specific heat capacity is q_{L}=126.12kJ/kg
The efficiency of the temperature is n_{TH}=0.67
Explanation:
The p-v diagram illustration is in the attachment
T_{H} means high temperature
T_{L} means low temperature
The energy equation :
= R*
in(
/
)



The specific heat capacity:
=q_{h}*(T_{L}/T_{H})
q_{L}=378.36 * (400/1200)
q_{L}=378.36 * 0.333
q_{L}=126.12kJ/kg
The efficiency of the temperature will be:
=1 - (
/
)
n_{TH}=1-(400/1200)
n_{TH}=1-0.333
n_{TH}=0.67
Answer:
lower
Explanation:
The lower the value of the coefficient of friction, the lower the resistance to sliding.
The coefficient of friction is the ratio of the frictional force and the normal force pressing two surfaces in contact together.
U =
U is the coefficient of friction
F is the frictional force
N is the normal force
We see that coefficient of friction is directly proportional to frictional force.
Answer:
4. Electrons move from higher energy states to lower energy states.
Explanation:
When electrons fall from a higher (excited) energy state to a lower energy state, it loses/gives out energy.
This energy is given out by the emission of photons (quanta of light) by the electron.
Answer:
A
Explanation:
Opposite attract. Since electrons are negative they will be attracted to the protons because they a positive