.
<h3>Explanation</h3>
The Stefan-Boltzmann Law gives the energy radiation <em>per unit area</em> of a black body:
where,
- the total power emitted,
- the surface area of the body,
- the Stefan-Boltzmann Constant, and
- the temperature of the body in degrees Kelvins.
.
.
.
Keep as many significant figures in as possible. The error will be large when is raised to the power of four. Also, the real value will be much smaller than since the emittance of a human body is much smaller than assumed.
Answer:
Explanation:
All the energy in oil, gas, and coal originally came from the sun, captured through photosynthesis.for example when we burn wood to release energy that trees capture from the sun, we burn fossil fuels to release the energy that ancient plants captured from the sun. We can think of this energy as having been deposited in a natural solar power bank over millions of years.
So, in one sense, gasoline-burning cars, coal-burning power plants, and homes heated by natural gas are all solar powered!
Answer:
B. Geosphere
A. Biosphere
A. Atmosphere
Explanation:
Volcanic eruptions occurs within the Geosphere. The geosphere is the rock solid earth make up of rocks that extends into the deep interior.
Magma formed deep within the crust rises to elevated parts and finally erupts as lava on the surface. When they cool, they solidify to form volcanic rocks.
The volcanic eruptions affects the biosphere significantly. The biosphere is the portion of the earth where all life forms exists.
Gases and ash spewed during an eruption into the atmosphere causes severe changes to weather and leads to pollution. The atmosphere is the gaseous envelope round the earth.
The amount of heat needed to increase the temperature of a substance by
is given by
where
m is the mass of the substance
the specific heat capacity
the increase in temperature
In our problem, the mass of the water is m=750 g, the specific heat is
and the amount of heat supplied is
, so if we re-arrange the previous formula we find the increase in temperature of the water:
Wavelength is the distance between 2 adjacent points in a wave
we can use the following equation to find the wavelength of a sound wave
wavelength = speed / frequency
frequency is the number of waves passing a point in 1 second
substituting the values in the equation
wavelength = 343 m/s / 686 Hz
wavelength = 0.5 m
wavelength of the wave is 0.5 m