1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slava [35]
4 years ago
15

In a certain clock, a pendulum of length L1 has a period T1 = 0.95s. The length of the pendulum

Physics
1 answer:
gulaghasi [49]4 years ago
8 0

Answer:

Ratio of length will be \frac{L_2}{L_1}=1.108

Explanation:

We have given time period of the pendulum when length is L_1 is T_1=0.95sec

And when length is L_2 time period T_2=1sec

We know that time period is given by

T=2\pi \sqrt{\frac{L}{g}}

So 0.95=2\pi \sqrt{\frac{L_1}{g}}----eqn 1

And 1=2\pi \sqrt{\frac{L_2}{g}}-------eqn 2

Dividing eqn 2 by eqn 1

\frac{1}{0.95}=\sqrt{\frac{L_2}{L_1}}

Squaring both side

\frac{L_2}{L_1}=1.108

You might be interested in
if a ball dropped from the top of a building takes 8.2 seconds to hit the ground, how tall is the building?
fgiga [73]

Answer:

This really depends on the size of the ball and if the ball is going straight down or at a diagonal angle

Explanation:

7 0
3 years ago
A pencil rolls horizontally of a 1 meter high desk and lands .25 meters from the base of the desk. How fast was the pencil rolli
vovikov84 [41]

Answer: 0.55 m/s

Explanation:

This situation is related to projectile motion (also called parabolic motion), where the main equations are as follows:

x=V_{o} cos\theta t (1)

y=y_{o}+Vo sin \theta t + \frac{g}{2}t^{2} (2)

Where:

x=0.25 m is the horizontal displacement of the pencil

V_{o} is the pencil's initial velocity

\theta=0\° since we are told the pencil rolls <u>horizontally</u> before falling

t is the time since the pencil falls until it hits the ground

y_{o}=1 m  is the initial height of the pencil

y=0  is the final height of the pencil (when it finally hits the ground)

g=-9.8m/s^{2}  is the acceleration due gravity, always acting vertically downwards

Begining with (1):

x=V_{o} cos(0\°) t (3)

x=V_{o}t (4)

Finding t from (2):

0=1 m+ \frac{-9.8m/s^{2}}{2}t^{2} (5)

t=\sqrt{\frac{-2y_{o}}{g}} (6)

Substituting (6) in (4):

x=V_{o}\sqrt{\frac{-2y_{o}}{g}} (7)

Isolating V_{o}:

V_{o}=\frac{x}{\sqrt{\frac{-2y_{o}}{g}}} (8)

V_{o}=\frac{0.25 m}{\sqrt{\frac{-2(1 m)}{-9.8m/s^{2}}}} (9)

Finally:

V_{o}=0.55 m/s

4 0
4 years ago
Sleep is a difficult problem for dolphins because dolphins __________. A. need more sleep than their predators B. must be awake
Alex17521 [72]
Need more sleep than their predators
5 0
3 years ago
Read 2 more answers
PLEASE HELP ME THANK YOUUU
Taya2010 [7]

Answer:

A) or B) which ever you choose in order

Explanation

Hope it helps:)

3 0
3 years ago
Read 2 more answers
The body weighing 2 kg moves through the horizontal surface and crosses the path x = 75 cm The coefficient of friction of the bo
Taya2010 [7]

The kinetic energy of the body in definitive position is 4.24 J.

Explanation:

As per the work energy theorem, the work done on any system or object to move it from one position to another is equal to the change in kinetic energy of the object. In this case, the body weighing 2 kg is moved over an horizontal surface for a distance of 75 cm. As there will be frictional force acting on the body while moving over the surface. This frictional force multiplied by the distance the object is moved will give the work done on the body.

Frictional force = Coeffficent of friction × Normal force.

As the weight of the body is 2 kg, the normal force acting on it will be mass multiplied with acceleration due to gravity.

Frictional force = - 0.8×9.8 × 2 =-15.68 N

So the work done will be the product of frictional force with the displacement of 75 cm or 0.75 m.

Work done =  Frictional force × Displacement

Work done = -15.68×0.75 = -11.76 J.

So the work is done by the object.

If the kinetic energy of the body at starting is 16 J, then the kinetic energy of the body at definitive position will be obtained as below.

Work done = change in kinetic energy

-11.76 J = Final kinetic energy-16 J

Final Kinetic energy = - 11.76+16

Final kinetic energy = 4.24 J

Thus, the kinetic energy of the body in definitive position is 4.24 J.

3 0
3 years ago
Other questions:
  • What do two troughs make when they meet
    12·1 answer
  • An electron is acted on by two electric forces, one of 2.7×10-14 N acting upward and a second of 5.8×10-14 N acting to the right
    7·1 answer
  • A train traveled 280km in 3.5 hours. what was the average speed in m/s?
    7·1 answer
  • A sinusoidal electromagnetic wave is propagating in a vacuum in the +z-direction.Part AIf at a particular instant and at a certa
    14·1 answer
  • A 2kg object is moving with speed 5ms. then hits a
    14·1 answer
  • How do smaller summer ice flores affect polar bears physically?
    7·1 answer
  • What is the weight of an object(on earth) that has a mass of 50Kg (g earth=10N/Kg)
    10·1 answer
  • Help I need help with this
    11·1 answer
  • A 65 kg woman is inside an elevator. (A) Calculate her apparent weight (normal force) in Newtons if the elevator moves at consta
    14·1 answer
  • A treasure chest full of silver and gold coins is being lifted from a pirate ship to the shore using two ropes as shown in the f
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!