Answer:
The relationship is only between the coefficients A, E and J which is:
. The remaining coefficients can be anything without any constraints.
Explanation:
Given:
The three components of velocity is a velocity field are given as:

The fluid is incompressible.
We know that, for an incompressible fluid flow, the sum of the partial derivatives of each component relative to its direction is always 0. Therefore,

Now, let us find the partial derivative of each component.

Hence, the relationship between the coefficients is:

There is no such constraints on other coefficients. So, we can choose any value for the remaining coefficients B, C, D, F, G and H.
(a) The time for the capacitor to loose half its charge is 2.2 ms.
(b) The time for the capacitor to loose half its energy is 1.59 ms.
<h3>
Time taken to loose half of its charge</h3>
q(t) = q₀e-^(t/RC)
q(t)/q₀ = e-^(t/RC)
0.5q₀/q₀ = e-^(t/RC)
0.5 = e-^(t/RC)
1/2 = e-^(t/RC)
t/RC = ln(2)
t = RC x ln(2)
t = (12 x 10⁻⁶ x 265) x ln(2)
t = 2.2 x 10⁻³ s
t = 2.2 ms
<h3>
Time taken to loose half of its stored energy</h3>
U(t) = Ue-^(t/RC)
U = ¹/₂Q²/C
(Ue-^(t/RC))²/2C = Q₀²/2Ce
e^(2t/RC) = e
2t/RC = 1
t = RC/2
t = (265 x 12 x 10⁻⁶)/2
t = 1.59 x 10⁻³ s
t = 1.59 ms
Thus, the time for the capacitor to loose half its charge is 2.2 ms and the time for the capacitor to loose half its energy is 1.59 ms.
Learn more about energy stored in capacitor here: brainly.com/question/14811408
#SPJ1
As thermal energy increases, there is more particle movement. As thermal energy increases, there is more particle movement. As thermal energy increases, there is less particle movement.
Sure hope this helps you
Answer:
Catapult on the ground: Normal, gravity
Catapult (I'm assuming launching marshmallow): Reaction of Force Applied
Marshmallow: Force Applied
Explanation:
This is the forces that act on a stationary object and a launched object. The catapult may also experience a force friction if your teacher is taking a more practical sense.