The correct answer is letter c. Enthalpy (H). Entrophy means the measure of the degree of disorder. Gibbs energy formulated by Josiah Willard Gibbs and it is the energy associated with a chemical reaction to do work.Fusion is the combining light nuclei into a heavier nucleus.
Answer:
The value of total energy needed per minute for the humidifier = 77.78 KJ
Explanation:
Total energy per minute the humidifier required = Energy required to heat water to boiling point) + Energy required to convert liquid water into vapor at the boiling point) ----- (1)
Specific heat of water = 4190 
The heat of vaporization is = 2256 
Mass = 0.030 kg
Energy needed to heat water to boiling point = 
Energy needed to heat water to boiling point = 0.030 × 4.19 × (100 - 20)
Energy (
) = 10.08 KJ
Energy needed to convert liquid water into vapor at the boiling point
= 0.030 × 2256 = 67.68 KJ
Thus the total energy needed E =
+ 
E = 10.08 + 67.68
E = 77.78 KJ
This is the value of total energy needed per minute for the humidifier.
Answer:
A λ = 97.23 nm
, B) λ = 486.2 nm
, C) λ = 53326 nm
Explanation:
With that problem let's use the Bohr model equation for the hydrogen atom
= -k e² /2a₀ 1/n²
For a transition between two states we have
-
= -k e² /2a₀ (1/
² - 1 / n₀²)
Now this energy is given by the Planck equation
E = h f
And the speed of light is
c = λ f
Let's replace
h c / λ = - k e² /2a₀ (1 /
² - 1 / no₀²)
1 / λ = - k e² /2a₀ hc (1 /
² -1 / n₀²)
Where the constants are the Rydberg constant
= 1.097 10⁷ m⁻¹
1 / λ =
(1 / n₀² - 1 / nf²)
Now we can substitute the given values
Part A
Initial state n₀ = 1 to the final state
= 4
1 / λ = 1.097 10⁷ (1/1 - 1/4²)
1 / λ = 1.0284 10⁷ m⁻¹
λ = 9.723 10⁻⁸ m
We reduce to nm
λ = 9.723 10⁻⁸ m (10⁹ nm / 1m)
λ = 97.23 nm
Part B
Initial state n₀ = 2 final state
= 4
1 / λ = 1.097 10⁷ (1/2² - 1/4²)
1 / λ = 0.2056 10⁻⁷ m
λ = 486.2 nm
Part C
Initial state n₀ = 3
1 / λ = 1,097 10⁷ (1/3² - 1/4²)
1 / λ = 5.3326 10⁵ m⁻¹
λ = 5.3326 10-5 m
λ = 53326 nm