1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zimovet [89]
3 years ago
13

A spaceship departs from Earth for the star Alpha Centauri, which is 4.37 light-years away. The spaceship travels at 0.70c. 1) W

hat is the time required to get there as measured by a passenger on the spaceship
Physics
1 answer:
Nutka1998 [239]3 years ago
7 0

Answer:

Time = 6.243 years = (1.97 × 10⁸) s

Explanation:

Speed = (Distance)/(Time)

Time = (Distance)/(Speed)

Distance = 4.37 light years = 4.37 × c × years

Time = (4.37 c.years)/(0.7c)

Time = 6.243 years = (1.97 × 10⁸) s

Hope this Helps!!!

You might be interested in
. Question: 23 of 24:. Which statement is true regarding DC current?. Select one of the options below as your answer:. . A.. The
Umnica [9.8K]
"<span>There can only be one voltage supplied" is the statement among the statements given in the question that true regarding DC current. The correct option among all the options that are given in the question is the second option or option "B'. I hope the answer comes to your help.</span>
4 0
3 years ago
Read 2 more answers
A 7750 kg space probe, moving nose-first toward Jupiter at 179 m/s relative to the Sun, fires its rocket engine, ejecting 72.0 k
Reika [66]

Answer:

179.47m/s

Explanation:

Using the law of conservation of momentum

m1u1 + m2u2 = (m1+m2)v

m1 and m2 are the masses

u1 and u2 are the initial velocities

v is the final velocity

Substitute

7750(179)+72(230) = (7750+72)v

1,387,250+16560 = 7822v

1,403,810 = 7822v

v = 1,403,810/7822

v= 179.47m/s

Hence the final velocity of the probe is 179.47m/s

7 0
3 years ago
Where must an object be placed to form an image 30.0 cm from a diverging lens with a focal length of 43.0 cm?
Schach [20]
Using lens equation;

1/o + 1/i = 1/f; where o = Object distance, i = image distance (normally negative), f = focal length (normally negative)

Substituting;

1/o + 1/-30 = 1/-43 => 1/o = -1/43 + 1/30 = 0.01 => o = 1/0.01 = 99.23 cm

Therefore, the object should be place 99.23 cm from the lens.
6 0
3 years ago
Sphere A with mass 80 kg is located at the origin of an xy coordinate system; sphere B with mass 60 kg is located at coordinates
IRINA_888 [86]

Answer:

Fc = [ - 4.45 * 10^-8 j ] N  

Explanation:

Given:-

- The masses and the position coordinates from ( 0 , 0 ) are:

       Sphere A : ma = 80 kg , ( 0 , 0 )

       Sphere B : ma = 60 kg , ( 0.25 , 0 )

       Sphere C : ma = 0.2 kg , ra = 0.2 m , rb = 0.15

- The gravitational constant G = 6.674×10−11 m3⋅kg−1⋅s−2

Find:-

what is the gravitational force on C due to A and B?

Solution:-

- The gravitational force between spheres is given by:

                       F = G*m1*m2 / r^2

Where, r : The distance between two bodies (sphere).

- The vector (rac and rbc) denote the position of sphere C from spheres A and B:-

 Determine the angle (α) between vectors rac and rab using cosine rule:

                   cos ( \alpha ) = \frac{rab^2 + rac^2 - rbc^2}{2*rab*rac} \\\\cos ( \alpha ) = \frac{0.25^2 + 0.2^2 - 0.15^2}{2*0.25*0.2}\\\\cos ( \alpha ) = 0.8\\\\\alpha = 36.87^{\circ \:}

 Determine the angle (β) between vectors rbc and rab using cosine rule:

                   cos ( \beta  ) = \frac{rab^2 + rbc^2 - rac^2}{2*rab*rbc} \\\\cos ( \beta  ) = \frac{0.25^2 + 0.15^2 - 0.2^2}{2*0.25*0.15}\\\\cos ( \beta  ) = 0.6\\\\\beta  = 53.13^{\circ \:}

- Now determine the scalar gravitational forces due to sphere A and B on C:

       Between sphere A and C:

                  Fac = G*ma*mc / rac^2

                  Fac = (6.674×10−11)*80*0.2 / 0.2^2  

                  Fac = 2.67*10^-8 N

                  vector Fac = Fac* [ - cos (α) i + - sin (α) j ]

                  vector Fac = 2.67*10^-8* [ - cos (36.87°) i + -sin (36.87°) j ]

                  vector Fac = [ - 2.136 i - 1.602 j ]*10^-8 N

       Between sphere B and C:

                  Fbc = G*mb*mc / rbc^2

                  Fbc = (6.674×10−11)*60*0.2 / 0.15^2  

                  Fbc = 3.56*10^-8 N

                  vector Fbc = Fbc* [ cos (β) i - sin (β) j ]

                  vector Fbc = 3.56*10^-8* [ cos (53.13°) i - sin (53.13°) j ]

                  vector Fbc = [ 2.136 i - 2.848 j ]*10^-8 N

- The Net gravitational force can now be determined from vector additon of Fac and Fbc:

                  Fc = vector Fac + vector Fbc

                  Fc = [ - 2.136 i - 1.602 j ]*10^-8  + [ 2.136 i - 2.848 j ]*10^-8

                  Fc = [ - 4.45 * 10^-8 j ] N  

3 0
4 years ago
For copper, ρ = 8.93 g/cm3 and M = 63.5 g/mol. Assuming one free electron per copper atom, what is the drift velocity of electro
viktelen [127]

Answer:

V_d = 1.75 × 10⁻⁴ m/s

Explanation:

Given:

Density of copper, ρ = 8.93 g/cm³

mass, M = 63.5 g/mol

Radius of wire = 0.625 mm

Current, I = 3A

Area of the wire, A = \frac{\pi d^2}{4} = A = \frac{\pi 0.625^2}{4}

Now,

The current density, J is given as

J=\frac{I}{A}=\frac{3}{ \frac{\pi 0.625^2}{4}}= 2444619.925 A/mm²

now, the electron density, n = \frac{\rho}{M}N_A

where,

N_A=Avogadro's Number

n = \frac{8.93}{63.5}(6.2\times 10^{23})=8.719\times 10^{28}\ electrons/m^3

Now,

the drift velocity, V_d

V_d=\frac{J}{ne}

where,

e = charge on electron = 1.6 × 10⁻¹⁹ C

thus,

V_d=\frac{2444619.925}{8.719\times 10^{28}\times (1.6\times 10^{-19})e} = 1.75 × 10⁻⁴ m/s

4 0
3 years ago
Read 2 more answers
Other questions:
  • A group of 25 particles have the following speeds: two have speed 11m/s , seven have 16m/s , four have 22m/s , three have 25m/s
    10·1 answer
  • Which one of the following accurately describes the force of gravity? A. The gravity acceleration has no effect on a body moving
    6·2 answers
  • A height of 6 ft 3 in is equal to _______. (Round to 3 significant digits)
    7·2 answers
  • A car with a mass of 1140 kg is traveling in a mountainous area with a constant speed of 71.8 km/h. The road is horizontal and f
    10·1 answer
  • Land, labor, and capital are examples of...​
    14·1 answer
  • In a vacuum, two particles have charges of q1 and q2, where q1 = +3.2 µC. They are separated by a distance of 0.28 m, and partic
    5·1 answer
  • A car accelerates from rest at 5.75m/s2 for 4.4 sec when it runs out of pavement and runs into some mud. In the mud it accelerat
    6·1 answer
  • A distant galaxy emits light that has a wavelength of 434.1 nm. On earth, the wavelength of this light is measured to be 438.6 n
    11·1 answer
  • The Pacific Plate is moving 29 mm/year toward the north and 20 mm/year toward the west relative to the North American Plate. Sho
    5·1 answer
  • What is the electric potential difference of 5cm from a point charge of -2.0µc
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!