5.55 mol H2O
Explanation:
Water has a molar mass of 18.01528 g/mol. We can then calculate the number of moles of water as
100 g H20 × (1 mol H2O/18.01528 g H20)
= 5.55 mol H2O
Answer:
d = 6.43 cm
Explanation:
Given:
- Speed resistance coefficient in silicon n = 3.50
- Memory takes processing time t_p = 0.50 ns
- Information is to be obtained within T = 2.0 ns
Find:
- What is the maximum distance the memory unit can be from the central processing unit?
Solution:
- The amount of time taken for information pulse to travel to memory unit:
t_m = T - t_p
t_m = 2.0 - 0.5 = 1.5 ns
- We will use a basic relationship for distance traveled with respect to speed of light and time:
d = V*t_m
- Where speed of light in silicon medium is given by:
V = c / n
- Hence, d = c*t_m / n
-Evaluate: d = 3*10^8*1.5*10^-9 / 3.50
d = 0.129 m 12.9 cm
- The above is the distance for pulse going to and fro the memory and central unit. So the distance between the two is actually d / 2 = 6.43 cm
Answer:
Explanation:
Check attachment for solution
The terminating pin strikes the preliminary, making it detonate. The flash from the groundwork touches off the black powder. Gas changed over from the consuming powder quickly extends in the cartridge. ... The shot's speed and getting away from gases produce a "blast."