The velocity is the integral of acceleration. If acceleration is 100 m/s^2 then velocity is:
So to know the velocity at any time, t, we just put t in seconds into this equation. To know at what time we get to a certain velocity, we set this equation equal to that velocity and solve for t:
With each<span> passing </span>day<span>, the </span>high tides occur<span> about an </span>hour later<span>. The moon rises about an </span>hour later each day<span>, too (actually, 54 minutes </span>later<span>). Since the moon pulls up the </span>tides<span>, these two delays are connected. As the earth rotates through </span>one day<span>, the moon moves in its orbit.</span>
As it was explained in the Introductory Article on the Electromagnetic Spectrum, electromagnetic radiation can be described as a stream of photons, each traveling in a wave-like pattern, carrying energy and moving at the speed of light. In that section, it was pointed out that the only difference between radio waves, visible light and gamma rays is the energy of the photons. Radio waves have photons with the lowest energies. Microwaves have a little more energy than radio waves. Infrared has still more, followed by visible, ultraviolet, X-rays and gamma rays.
That should be able to help answer your question :)
These energy exchanges are not changes in kinetic energy. They are changes in bonding energy between the molecules. If heat is coming into a substance during a phase change, then this energy is used to break the bonds between the molecules of the substance. The example we will use here is ice melting into water.
Answer:
20 V
Explanation:
Power is 100 J/s or 100 W.
We know that P = IV = .
Isolate the potential difference. V = = = 20 V