Answer: both mm and inches on each dimension in a sketch (with the main dimension in one format and the other in brackets below it), in the way you can have dual dimensions shown when detailing an idw view.
personally think it would look a mess/cluttered with even more text all over the sketch environment, but everyone's differenent.
If it's any help - you know you can enter dimensions in either format? If you're working in mm you can still dimension a line and type "2in" and vice-versa. Probably know this already, but no harm saying it, just in case.
You can enter the units directly in or mm and Inventor will convert to current document settings (which you can change - maybe someone can come up with a simple toggle icon to toggle the document settings). Tools>Document Settings>Units
Unlike SolidWorks when you edit the dimension the original entry shows in the dialog box so it makes it easy to keep track of different units even if they aren't always displayed. (SWx does the conversion or equation and then that is what you get.)
I work quite a bit in inch and metric and combination (ex metric frame motor on inch machine) and it doesn't seem to be a real difficulty to me.
Answer:
technician A is correct
Explanation:
Technician B has circuit topologies confused. In a series circuit, there is only one path for electrical current to take. In a parallel circuit, the current will divide between paths in proportion to the inverse of their resistance. The least resistance path will have the most current.
Technician A is mostly correct.
Answer:
The maximum length is 3.897×10^-5 mm
Explanation:
Extension = surface energy/elastic modulus
surface energy = 1.05 J/m^2
elastic modulus = 198 GPa = 198×10^9 Pa
Extension = 1.05/198×10^9 = 5.3×10^-12 m
Strain = stress/elastic modulus = 27×10^6/198×10^9 = 1.36×10^-4
Length = extension/strain = 5.3×10^-12/1.36×10^-4 = 3.897×10^-8 m = 3.897×10^-8 × 1000 = 3.897×10^-5 mm
Answer:
(a) the rate of heat transfer to the coolant is Q = 139.71W
(b) the surface temperature of the shaft T = 40.97°C
(c) the mechanical power wasted by the viscous dissipation in oil 22.2kW
Explanation:
See explanation in the attached files