Answer:
77J
Explanation:
Not really an explanation to this, I just had this lesson last year and remembered it.
Hope I helped! ☺
Answer:
Explanation:
Answer: Gamma rays
Gamma rays have the highest frequency.
What is an electromagnetic wave?
An electromagnetic wave requires no medium for its propagation.
It consists of a spectrum of different wavelengths.
Different wavelengths of rays have different energies and different frequencies.
Higher frequency rays have the highest energies.
What is gamma-ray?
These are ionized radiations.
Gamma radiations are obtained from the decay of the atomic nucleus.
It has the highest frequency which is why it can penetrate through matter.
It has the smallest wavelength and highest energy.
The frequency of gamma rays is more than 10^19 cycles per second and wavelength less than 100 picometers.
Answer:
Part of the question is missing but here is the equation for the function;
Consider the equation v = (1/3)zxt2. The dimensions of the variables v, x, and t are [L/T], [L], and [T] respectively.
Answer = The dimension for z = 1/T3 i.e 1/ T - raised to power 3
Explanation:
What is applied is the principle of dimensional homogenuity
From the equation V = (1/3)zxt2.
- V has a dimension of [L/T]
- t has a dimension of [T]
- from the equation, make z the subject of the relation
- z = v/xt2 where 1/3 is treated as a constant
- Substituting into the equation for z
- z = L/T / L x T2
- the dimension for z = 1/T3 i.e 1/ T - raised to power 3
Answer:
b) tan a = 3
Explanation:
Draw a free body diagram (see attached).
There are three forces acting on the insect. Weight downwards, normal force towards the center of the hemisphere, and friction tangent to the surface.
Sum of the forces in the radial direction:
∑F = ma
N − mg cos α = 0
N = mg cos α
Sum of the forces in the tangential direction:
∑F = ma
μN − mg sin α = 0
Substituting:
μ(mg cos α) − mg sin α = 0
μ cos α − sin α = 0
μ cos α = sin α
μ = tan α
The maximum possible value of the angle is such that its tangent is equal to the coefficient of friction.
Answer:
2.1 × 10⁻⁵ T
Explanation:
Given:
Inner radius, r = 4 mm = 0.004 m
Outer radius, R = 25 mm = 0.025 m
Current, I = 4 A
Distance of the point from the center, a = 17 mm = 0.017 m
μ₀ = 4π × 10⁻⁷ T·m/A
Now,
For the hollow cylinder magnetic field (B) is given as:
on substituting the respective values, we get
or
B = 2.1 × 10⁻⁵ T