Answer:
Billions :)
<em>hope this helps! <3</em>
Complete question
A 2700 kg car accelerates from rest under the action of two forces. one is a forward force of 1157 newtons provided by traction between the wheels and the road. the other is a 902 newton resistive force due to various frictional forces. how far must the car travel for its speed to reach 3.6 meters per second? answer in units of meters.
Answer:
The car must travel 68.94 meters.
Explanation:
First, we are going to find the acceleration of the car using Newton's second Law:
(1)
with m the mass , a the acceleration and
the net force forces that is:
(2)
with F the force provided by traction and f the resistive force:
(2) on (1):

solving for a:

Now let's use the Galileo’s kinematic equation
(3)
With Vo te initial velocity that's zero because it started from rest, Vf the final velocity (3.6) and
the time took to achieve that velocity, solving (3) for
:


Answer:
1. 0.45 s.
2. 4.41 m/s
Explanation:
From the question given above, the following data were obtained:
Height (h) = 1 m
Time (t) =?
Velocity (v) =?
1. Determination of the time taken for the pencil to hit the floor.
Height (h) = 1 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
1 = ½ × 9.8 × t²
1 = 4.9 × t²
Divide both side by 4.8
t² = 1/4.9
Take the square root of both side
t = √(1/4.9)
t = 0.45 s.
Thus, it will take 0.45 s for the pencil to hit the floor.
2. Determination of the velocity with which the pencil hit the floor.
Initial velocity (u) = 0 m/s
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) = 0.45 s.
Final velocity (v) =?
v = u + gt
v = 0 + (9.8 × 0.45)
v = 0 + 4.41
v = 4.41 m/s
Thus, the pencil hit the floor with a velocity of 4.41 m/s
A. Coming out near the South Pole and going in near the North Pole