To solve this, we can use two equations.
t1/2 = ln 2 / λ = 0.693 / λ
where, t1/2 is half-life and λ is the decay constant.
t1/2 = 10 min = 0.693 / λ
Hence, λ = 0.693 / 10 min - (1)
Nt = Nο e∧(-λt)
Nt = amount of atoms at t =t time
Nο= initial amount of atoms
t = time taken
by rearranging the equation,
Nt/Nο = e∧(-λt) - (2)
From (1) and (2),
Nt/Nο = e∧(-(0.693 / 10 min) x 20 min)
Nt/Nο = 0.2500
Percentage of remaining nuclei = (nuclei at t time / initial nuclei) x 100%
= (Nt/Nο ) x 100%
= 0.2500 x 100%
= 25.00%
Hence, Percentage of remaining nuclei is 25.00%
Answer:
Ice is water in its solid form. Ice keeps its shape, even if it's removed from the container. The molecules in ice are locked into place and cannot move or slide past one another, but they do vibrate a little bit.
Explanation:
As the temperature drops or decreases, the water molecules gradually slow down. Eventually they stop moving and simply vibrate back and forth. At this point ice is formed, the solid phase of water. If the temperature is allowed to increase, the molecules will once again begin to vibrate faster and faster.
Answer:
If we subtract the atomic number from the atomic mass: atomic mass - atomic number = number of protons + number of neutrons - number of protons. Thus we get the number of neutrons present in an atom when we subtract the atomic number from the atomic mass.
Explanation: hope this helps???
Molarity can be defined as the number of moles of substance dissolved in 1 L of solution.
In the given question ,
number of LiOH moles - 1.495 mol
Dissolved volume - 750 mL
molarity is calculated for 1 L = 1000 mL
In 750 mL - 1.495 mol of LiOH is dissolved
Therefore in 1000 mL - 1.495 mol / 750 mL x 1000 = 1.99 mol