Answer:
2
Explanation:
In two reactions energy is released.
1) C₆H₁₂O₆ + 6O₂ → 6H₂O + 6CO₂ + heat
It is cellular respiration reaction.It involves the breakdown of glucose molecule in the presence of oxygen to yield large amount of energy. Water and carbon dioxide are also produced as a byproduct.
Glucose + oxygen → carbon dioxide + water + 38ATP
2) 2H₂ + O₂ → 2H₂O ΔH = -486 kj/mol
The given reaction is formation of water. In this reaction oxygen and hydrogen react to form water and 486 kj/mol is also released.
The reaction in which heat is released is called exothermic reaction.
Exothermic reaction:
The type of reactions in which energy is released are called exothermic reactions.
In this type of reaction energy needed to break the bonds are less than the energy released during the bond formation.
For example:
Chemical equation:
C + O₂ → CO₂
ΔH = -393 Kj/mol
it can be written as,
C + O₂ → CO₂ + 393 Kj/mol
Endothermic reactions:
The type of reactions in which energy is absorbed are called endothermic reactions.
In this type of reaction energy needed to break the bond are higher than the energy released during bond formation.
For example:
C + H₂O → CO + H₂
ΔH = +131 kj/mol
it can be written as,
C + H₂O + 131 kj/mol → CO + H₂
Photosynthesis takes place in the chloroplasts, that is why the chloroplasts is green. The function of this organelles is to create energy into sugar from the sunlight.
Answer:
Any binary molecular compound of hydrogen and a Group 6A element above Selenium will be less acidic, so water and dihydrogen sulfide are less acidic in aqueous solution than hydrogen selenide.
Explanation:
Going down in a group increases the atomic radius and a greater atomic radius implyes greater ionic radius.
When ionization takes place in these compounds they yelds protons (hidrogen ion) and an lewis base (anion). The greater the ionic radius the greater its stability, thus the periodic tendency is increaing the acidity of binary hidrogen compounds when going down a group. On the other hand going up a group decreases acidity, so any molecular compound of hydrogen and a Group 6A element above Selenium will be less acidic, so water and dihydrogen sulfide are less acidic in aqueous solution than hydrogen selenide.
The theoretical yield of Ca(OH)₂ : 42.032 g
<h3>Further explanation</h3>
Given
31.8 g of CaO
Required
The theoretical yield of Ca(OH)₂
Solution
Reaction
CaO + H₂O⇒Ca(OH)₂
mol CaO (MW=56 g/mol) :
= mass : MW
= 31.8 g : 56 g/mol
= 0.568
From equation, mol Ca(OH)₂ = mol CaO = 0.568
Mass Ca(OH)₂ (MW=74 g/mol) :
= 0.568 x 74
= 42.032 g