Answer:
7.1 m/s
Explanation:
First, find the time it takes for the fish to reach the water.
Given in the y direction:
Δy = 6.1 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
6.1 m = (0 m/s) t + ½ (9.8 m/s²) t²
t = 1.12 s
Next, find the velocity needed to travel 7.9 m in that time.
Given in the x direction:
Δx = 7.9 m
a = 0 m/s²
t = 1.12 s
Find: v₀
Δx = v₀ t + ½ at²
7.9 m = v₀ (1.12 s) + ½ (0 m/s²) (1.12 s)²
v₀ = 7.1 m/s
Answer:
the distance from charge A to C is r₁₃= 1.216 m
Explanation:
following Coulomb's law , the force exerted by 2 point charges between themselves is:
F= k*q₁*q₂/r₁₂² , where q is charge , r is distance and 1 and 2 represents the charge A and charge B respectively , k=constant
since C ( denoted as 3) is at equilibrium
F₁₃=F₂₃
k*q₁*q₃/r₁₃²=k*q₂*q₃/r₂₃²
q₁/r₁₃²=q₂/r₂₃²
r₁₃²/q₁=r₂₃²/q₂
r₂₃=r₁₃*√(q₂/q₁)
since C is at rest and is co linear with A and B ( otherwise it would receive a net force in either vertical or horizontal direction) , we have
r₁₃+r₂₃=d=r₁₂
r₁₃+r₁₃*√(q₂/q₁)=d
r₁₃*(1+√(q₂/q₁))=d
r₁₃=d/(1+√(q₂/q₁))
replacing values
r₁₃=d/(1+√(q₂/q₁)) = 3.00 m/(1+√(3.10 C/1.44 C)) = 1.216 m
thus the distance from charge A to C is r₁₃= 1.216 m
The answer for the following problem is mentioned below.
The option for the question is "A" approximately.
- <u><em>Therefore the elastic potential energy of the string is 20 J.</em></u>
Explanation:
Given:
Spring constant (k) = 240 N/m
amount of the compression (x) = 0.40 m
To calculate:
Elastic potential energy (E)
We know;
<em>According to the formula;</em>
E =
× k × x × x
<u>E = </u>
<u> × k ×(x)²</u>
where;
E represents the elastic potential energy
K represents the spring constant
x represents amount of the compression in the string
So therefore,
Substituting the values in the above formula;
E =
× 240 × (0.40)²
E =
× 240 × 0.16
E =
× 38.4
E = 19.2 J or approximately 20 J
<u><em>Therefore the elastic potential energy of the string is 20 J.</em></u>
Answer:
The young tree, originally bent, has been brought into the vertical position by adjusting the three guy-wire tensions to AB = 7 lb, AC = 8 lb, and AD = 10 lb. Determine the force and moment reactions at the trunk base point O. Neglect the weight of the tree.
C and D are 3.1' from the y axis B and C are 5.4' away from the x axis and A has a height of 5.2'
Explanation:
See attached picture.