Answer:
A. A line can be drawn from the planet to the sun that sweeps out equal areas in equal times
Explanation:
This is exactly what Kepler's second law of planetary motion states:
"the segment joining the sun with the center of each planet sweeps out equal areas in equal time"
This law basically tells how the speed of a planet orbiting the sun changes during its revolution. In fact, we have that:
- when a planet is closer to the Sun, it will orbit faster
- when a planet is farther from the Sun, it will orbit slower
C. I did it bit i forgot how I did it
It's called cellular differentiation. I think.
- Speed is the rate of change of distance with time while velocity is the rate of change of displacement with time.
- Speed is a scalar quantity while velocity is a vector quantity.
- Speed cannot be negative but velocity can be negative.
Hope you could get an idea from here.
Doubt clarification - use comment section.
Answer:
t = 5.05 s
Explanation:
This is a kinetic problem.
a) to solve it we must fix a reference system, let's use a fixed system on the floor where the height is 0 m
b) in this system the equations of motion are
y = v₀ t + ½ g t²
where v₀ is the initial velocity that is v₀ = 0 and g is the acceleration of gravity that always points towards the center of the Earth
e) y = 0 + ½ g t²
t = √ (2y / g)
t = √(2 125 / 9.8)
t = 5.05 s