The viscous force on an object moving through air is proportional to its velocity.
The only forces acting on an object when falling are air resistance and its weight itself. The weight acts vertically downwards whereas air resistance acts vertically upward.
Let F be the viscous force due to air molecules, B be buoyant force due to air and W be the weight of falling object. Initially, the velocity of falling object and hence the viscous force F is zero and the object is accelerated due to force
(W-B). Because of the acceleration the velocity increases and accordingly the viscous force also increases. At a certain instant, the viscous force becomes equal to W-B. The net force then becomes zero and the object falls with constant velocity. This constant velocity is called terminal velocity.
Thus at terminal velocity, air resistance and force of gravity becomes equal.
Recall that average velocity is equal to change in position over a given time interval,

so that the <em>x</em>-component of
is

and its <em>y</em>-component is

Solve for
and
, which are the <em>x</em>- and <em>y</em>-components of the copter's position vector after <em>t</em> = 1.60 s.


Note that I'm reading the given details as

so if any of these are incorrect, you should make the appropriate adjustments to the work above.
Answer:
Latent heat is energy released or absorbed, by a body or a thermodynamic system, during a constant-temperature process. Two common forms of latent heat are latent heat of fusion (melting) and latent heat of vaporization (boiling).
Explanation:
The correct order they go in is "1-4-2-3" The correct answer is D.
This is not something that waves do because they need a medium to travel through, while particles do not.
<h3>How light travels in space?</h3>
A light travels without any medium while on the other hand, a medium is required for sound waves to move from oe place to another. Sound is a mechanical wave that cannot travel through a vacuum.
So we can conclude that electromagnetic waves like light do not require medium for its propagation.
Learn more about light here: brainly.com/question/19697218