The Kepler's laws predict the planetary motion, so there are three laws for this, namely:
1. The orbit of a planet is an ellipse with the Sun (the sun is a star!) at one of the two focus.
2. A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.
3. The square of the orbital period of a planet is proportional to the cube of the semi-major axis of its orbit.
So, let's use second law. The Sun sweeps out equal areas during equal intervals of time means that if A = B, the time the planet takes to travel A1A2 is equal to the time the planet takes to travel B1B2, but given that A = 2B, then takes twice the time to travel A1A2 compared to B1B2.
Answer:
25m/s
Explanation:
here we use 1st equation of motion
then we find this ans
Good morning.
We see that

The magnitude(norm, to be precise) can be calculated the following way:

Now the calculus is trivial:
Answer:
Bank angle = 35.34o
Explanation:
Since the road is frictionless,
Tan (bank angle) = V^2/r*g
Where V = speed of the racing car in m/s, r = radius of the arc in metres and g = acceleration due to gravity in m/s^2
Tan ( bank angle) = 40^2/(230*9.81)
Tan (bank angle) = 0.7091
Bank angle = tan inverse (0.7091)
Bank angle = 35.34o
Answer:
1.9 m.
Explanation:
Three complete waves in the length of 5.7 m
The distance traveled by one complete wave is called wavelength.
Thus, the distance traveled by one wave = 5.7 / 3 = 1.9 m
Thus, the wavelength is 1.9 m.