Answer:
2.2 meters
Explanation:
Potential energy, PE created by a charge, q at a radius r from the charge source, Q, is expressed as:
![KE=\frac{kQq}{r}\ \ \ \ \ \ \ ...i](https://tex.z-dn.net/?f=KE%3D%5Cfrac%7BkQq%7D%7Br%7D%5C%20%20%20%20%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20...i)
is Coulomb's constant.
#The electric field,
at radius r is expressed as:
![E=\frac{kQ}{r^2}\ \ \ \ \ \ \ \ \ \ ...ii](https://tex.z-dn.net/?f=E%3D%5Cfrac%7BkQ%7D%7Br%5E2%7D%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20...ii)
From i and ii, we have:
![KE=Eqr](https://tex.z-dn.net/?f=KE%3DEqr)
![r=(KE)/Eq](https://tex.z-dn.net/?f=r%3D%28KE%29%2FEq)
#Substitute actual values in our equation:
![r=\frac{75J}{(7.2\times 10^{-5}C)(4.8\times 10^5 V/m)}\\\\=2.1701\approx2.2\ m](https://tex.z-dn.net/?f=r%3D%5Cfrac%7B75J%7D%7B%287.2%5Ctimes%2010%5E%7B-5%7DC%29%284.8%5Ctimes%2010%5E5%20V%2Fm%29%7D%5C%5C%5C%5C%3D2.1701%5Capprox2.2%5C%20m)
Hence, the distance between the charge and the source of the electric field is 2.2 meters
Answer:
v₂ = 7.6 x 10⁴ m/s
Explanation:
given,
speed of comet(v₁) = 1.6 x 10⁴ m/s
distance (d₁)= 2.7 x 10¹¹ m
to find the speed when he is at distance of(d₂) 4.8 × 10¹⁰ m
v₂ = ?
speed of planet can be determine using conservation of energy
K.E₁ + P.E₁ = K.E₂ + P.E₂
![\dfrac{1}{2}mv_1^2-\dfrac{GMm}{r_1} = \dfrac{1}{2}mv_2^2-\dfrac{GMm}{r_2}](https://tex.z-dn.net/?f=%5Cdfrac%7B1%7D%7B2%7Dmv_1%5E2-%5Cdfrac%7BGMm%7D%7Br_1%7D%20%3D%20%5Cdfrac%7B1%7D%7B2%7Dmv_2%5E2-%5Cdfrac%7BGMm%7D%7Br_2%7D)
![\dfrac{1}{2}v_1^2-\dfrac{GM}{r_1} = \dfrac{1}{2}v_2^2-\dfrac{GM}{r_2}](https://tex.z-dn.net/?f=%5Cdfrac%7B1%7D%7B2%7Dv_1%5E2-%5Cdfrac%7BGM%7D%7Br_1%7D%20%3D%20%5Cdfrac%7B1%7D%7B2%7Dv_2%5E2-%5Cdfrac%7BGM%7D%7Br_2%7D)
![v_2^2= v_1^2 + \dfrac{2GM}{r_2}-\dfrac{2GM}{r_1}](https://tex.z-dn.net/?f=v_2%5E2%3D%20v_1%5E2%20%2B%20%5Cdfrac%7B2GM%7D%7Br_2%7D-%5Cdfrac%7B2GM%7D%7Br_1%7D)
![v_2= \sqrt{v_1^2 +2GM(\dfrac{1}{r_2}-\dfrac{1}{r_1})}](https://tex.z-dn.net/?f=v_2%3D%20%5Csqrt%7Bv_1%5E2%20%2B2GM%28%5Cdfrac%7B1%7D%7Br_2%7D-%5Cdfrac%7B1%7D%7Br_1%7D%29%7D)
![v_2= \sqrt{(1.6\times 10^4)^2 +2\times 6.67 \times 10^{-11}\times 1.99 \times 10^{30}(\dfrac{1}{4.8\times 10^{10}}-\dfrac{1}{2.7\times 10^{11}})}](https://tex.z-dn.net/?f=v_2%3D%20%5Csqrt%7B%281.6%5Ctimes%2010%5E4%29%5E2%20%2B2%5Ctimes%206.67%20%5Ctimes%2010%5E%7B-11%7D%5Ctimes%201.99%20%5Ctimes%2010%5E%7B30%7D%28%5Cdfrac%7B1%7D%7B4.8%5Ctimes%2010%5E%7B10%7D%7D-%5Cdfrac%7B1%7D%7B2.7%5Ctimes%2010%5E%7B11%7D%7D%29%7D)
v₂ = 7.6 x 10⁴ m/s
Answer:
The moon’s gravity is weaker than the earth gravity due to the smaller in size as compared to the earth. As there is no atmosphere present on the moon gravity, so there are fewer chances of withstanding temperature.
Please mark as brainliest
Answer:43.34 m
Explanation:
Given
acceleration(a)![=2 m/s^2](https://tex.z-dn.net/?f=%3D2%20m%2Fs%5E2)
Initial Velocity(u)=0 m/s
After 6 s fuel runs out
Velocity after 6 s
v=u+at
![v=0+2\times 6=12 m/s](https://tex.z-dn.net/?f=v%3D0%2B2%5Ctimes%206%3D12%20m%2Fs)
After this object will start moving under gravity
height reached in first 6 s
![s=ut+\frac{at^2}{2}](https://tex.z-dn.net/?f=s%3Dut%2B%5Cfrac%7Bat%5E2%7D%7B2%7D)
![s=0+\frac{2\times 6^2}{2}](https://tex.z-dn.net/?f=s%3D0%2B%5Cfrac%7B2%5Ctimes%206%5E2%7D%7B2%7D)
s=36 m
After fuel run out distance traveled in upward direction is
![v^2-u^2=2as_0](https://tex.z-dn.net/?f=v%5E2-u%5E2%3D2as_0)
here v=0
u=12 m/s
![a=9.8 m/s^2](https://tex.z-dn.net/?f=a%3D9.8%20m%2Fs%5E2)
![0-12^2=2(-9.8)(s)](https://tex.z-dn.net/?f=0-12%5E2%3D2%28-9.8%29%28s%29)
![s_0=\frac{144}{2\times 9.8}=7.34 m](https://tex.z-dn.net/?f=s_0%3D%5Cfrac%7B144%7D%7B2%5Ctimes%209.8%7D%3D7.34%20m)
![s+s_0=36+7.34=43.34 m](https://tex.z-dn.net/?f=s%2Bs_0%3D36%2B7.34%3D43.34%20m)
Answer:
No, it will not and this has a historical importance. The reason is that transformers work via induction of electrical forces by changes in magnetic fields, so the constat fields produced by dc currents won't work at all
Explanation: