1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Valentin [98]
3 years ago
10

A current of 6.0 A runs through a circuit for 2.5 minutes.

Physics
2 answers:
Mekhanik [1.2K]3 years ago
5 0
Current is measured as charge per unit time. To get change, simply multiply the current with time:

6A*2.5mins = 6A*(2.5*60)seconds = 900Coulombs
Sunny_sXe [5.5K]3 years ago
3 0

Answer: 900 C

Explanation:

The intensity of current is defined as:

I=\frac{Q}{t}

where

Q is the amount of charge that passes through a given point in the circuit

t is the time taken

In this problem, we know the current in the circuit, I=6.0 A, and we know the time taken, which is

t=2.5 min \cdot 60 s/min = 150 s

Therefore we can re-arrange the equation above to calculate the charge delivered to the circuit:

Q=It=(6.0 A)(150 s)=900 C

You might be interested in
PE (potential energy) + KE (kinetic energy) will equal ME (mechanical energy) ... explain this in your own words, or by using an
sdas [7]

Answer:

Potential energy plus kinetic energy equals mechanical energy because mechanical energy is basically just all of an object's energy, it's just two kinds of energy. The potential is stored inside and kinetic is being used. Both of those together is the total amount of the objects energy, which is the mechanical energy.

Explanation:

7 0
3 years ago
Read 2 more answers
A 60.0 kg girl stands up on a stationary floating raft and decides to go into shore. She dives off the 180 kg floating raft with
lord [1]
Momentum, p = m.v
m of the girl = 60.0 kg
m of the boat = 180 kg
v of the girl = 4.0 m/s

A) Momentum of the girl as she is diving:
p = m.v = 60.0 kg * 4.0 m/s = 24.0 N/s

B) momentum of the raft = - momentum of the girl = -24.0 N/s

C) speed of the raft

p = m.v ; v = p/m = 24.0N/s / 180 kg = -0.13 m/s [i.e. in the opposite direction of the girl's velocity]
6 0
3 years ago
A 27.0-m steel wire and a 48.0-m copper wire are attached end to end and stretched to a tension of 145 N. Both wires have a radi
algol13

Answer:

The time taken by the wave to travel  along the combination of two wires is 458 ms.

Explanation:

Given that,

Length of steel wire= 27.0 m

Length of copper wire = 48.0 m

Tension = 145 N

Radius of both wires = 0.450 mm

Density of steel wire \rho_{s}= 7.86\times10^{3}\ kg/m^{3}

Density of copper wire \rho_{c}=8.92\times10^{3}\ kg/m^3

We need to calculate the linear density of steel wire

Using formula of linear density

\mu_{s}=\rho_{s}A

\mu_{s}=\rho_{s}\times\pi r^2

Put the value into the formula

\mu_{s}=7.86\times10^{3}\times\pi\times(0.450\times10^{-3})^2

\mu_{s}=5.00\times10^{-3}\ kg/m

We need to calculate the linear density of copper wire

Using formula of linear density

\mu_{c}=\rho_{s}A

\mu_{c}=\rho_{s}\times\pi r^2

Put the value into the formula

\mu_{c}=8.92\times10^{3}\times\pi\times(0.450\times10^{-3})^2

\mu_{c}=5.67\times10^{-3}\ kg/m

We need to calculate the velocity of the wave along the steel wire

Using formula of velocity

v_{s}=\sqrt{\dfrac{T}{\mu_{s}}}

v_{s}=\sqrt{\dfrac{145}{5.00\times10^{-3}}}

v_{s}=170.3\ m/s

We need to calculate the velocity of the wave along the steel wire

Using formula of velocity

v_{c}=\sqrt{\dfrac{T}{\mu_{c}}}

v_{c}=\sqrt{\dfrac{145}{5.67\times10^{-3}}}

v_{c}=159.9\ m/s

We need to calculate the time taken by the wave to travel  along the combination of two wires

t=t_{s}+t_{c}

t=\dfrac{l_{s}}{v_{s}}+\dfrac{l_{c}}{v_{c}}

Put the value into the formula

t=\dfrac{27.0}{170.3}+\dfrac{48.0}{159.9}

t=0.458\ sec

t=458\ ms

Hence, The time taken by the wave to travel  along the combination of two wires is 458 ms.

4 0
4 years ago
A charge of 8.4 × 10–4 C moves at an angle of 35° to a magnetic field that has a field strength of 6.7 × 10–3 T.
sineoko [7]

Answer:10842.33m/s

Explanation:

F=qvBsine

V=f/(qBsine)

V=(3.5×10^-2)÷(8.4×10^-4×6.7×10^-3×sin35)

V=10842.33m/s

5 0
3 years ago
Which of the following could be the source of resistance in a household electric circuit?
Tpy6a [65]
D. all of these

all of these use electricity

Hope I helped! 
8 0
3 years ago
Read 2 more answers
Other questions:
  • The sunlight hits the surface of a lake this will like caused
    10·2 answers
  • A rubbit gets down from a rump which its /\x=0.85m in 0.5s, The rubbit's mass is 2kg, what is the net Force?
    7·1 answer
  • What will happen to the density of an object when it's mass increases?
    6·2 answers
  • What are the methods of heat transfer? ​
    13·1 answer
  • Find the magnitude of the average induced emf in the coil when the magnet is turned off and the field decreases to 0 T in 2.8 s
    11·1 answer
  • A kettle heats 1.75 kg of water. The specific latent heat of vaporisation of water is 3.34 x 106 J/kg. How much energy would be
    7·1 answer
  • The scientists used Nitrogen in her experiments​
    14·1 answer
  • A piston has an area of 4 m2 and needs 20 N of force to push it down. What is the pressure?P=F/A *
    9·1 answer
  • A bicyclist travels at the speed of 25 kilometers per hour for 5 hours. How far does the bicyclist go?
    11·2 answers
  • Ira is concerned about his posture. He tests it by seeing how long he can hold good posture and finds that he feels the most dis
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!