1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Soloha48 [4]
3 years ago
13

Ira is concerned about his posture. He tests it by seeing how long he can hold good posture and finds that he feels the most dis

comfort in his back. What does that suggest that he needs to do?
A.
Keep a neutral spine.
B.
Place his hands on his hips.
C.
Arc his back when he walks.
D.
Tuck his chin close to his chest.
Physics
1 answer:
larisa [96]3 years ago
6 0

Answer: C

Explanation:

JUST TO SIMPLE

You might be interested in
What is the mass of 3 m3 of a substance having density 1200 kg/m3​
adell [148]

Answer:

3600 kg

Explanation:

From the question,

Density = Mass/Volume

D = M/V.............................. Equation 1

Where D = Density of the substance, M = mass of the substance, V = Volume of the subtance.

Make M the subject of the equation

M = D×V ............................ Equation 2

Given: D = 1200 kg/m³, V = 3 m³.

Substitute these values into equation 2

M = 1200×3

M = 3600 kg.

Hence the mass of the substance is 3600 kg

4 0
3 years ago
Derive the formula for the moment of inertia of a uniform, flat, rectangular plate of dimensions l and w, about an axis through
Ad libitum [116K]

Answer:

A uniform thin rod with an axis through the center

Consider a uniform (density and shape) thin rod of mass M and length L as shown in (Figure). We want a thin rod so that we can assume the cross-sectional area of the rod is small and the rod can be thought of as a string of masses along a one-dimensional straight line. In this example, the axis of rotation is perpendicular to the rod and passes through the midpoint for simplicity. Our task is to calculate the moment of inertia about this axis. We orient the axes so that the z-axis is the axis of rotation and the x-axis passes through the length of the rod, as shown in the figure. This is a convenient choice because we can then integrate along the x-axis.

We define dm to be a small element of mass making up the rod. The moment of inertia integral is an integral over the mass distribution. However, we know how to integrate over space, not over mass. We therefore need to find a way to relate mass to spatial variables. We do this using the linear mass density of the object, which is the mass per unit length. Since the mass density of this object is uniform, we can write

λ = m/l (orm) = λl

If we take the differential of each side of this equation, we find

d m = d ( λ l ) = λ ( d l )

since  

λ

is constant. We chose to orient the rod along the x-axis for convenience—this is where that choice becomes very helpful. Note that a piece of the rod dl lies completely along the x-axis and has a length dx; in fact,  

d l = d x

in this situation. We can therefore write  

d m = λ ( d x )

, giving us an integration variable that we know how to deal with. The distance of each piece of mass dm from the axis is given by the variable x, as shown in the figure. Putting this all together, we obtain

I=∫r2dm=∫x2dm=∫x2λdx.

The last step is to be careful about our limits of integration. The rod extends from x=−L/2x=−L/2 to x=L/2x=L/2, since the axis is in the middle of the rod at x=0x=0. This gives us

I=L/2∫−L/2x2λdx=λx33|L/2−L/2=λ(13)[(L2)3−(−L2)3]=λ(13)L38(2)=ML(13)L38(2)=112ML2.

4 0
2 years ago
Which of these will always produce a magnetic field?
vovikov84 [41]

Answer:

Technically everything has somewhat of a magnetic field. I guess

7 0
3 years ago
How much heat is removed from 60 grams of steam at 100 °C to change it to 60 grams
Harrizon [31]

Answer:

45200J

Explanation:

Given parameters:

Heat of vaporization of water  = 2260J/g

Mass of steam = 20g

Temperature = 100°C

Unknown:

Energy released during the condensation  = ?

Solution:

This change is a phase change and there is no change in temperature

To find the amount of heat released;

         H  = mL

m is the mass

L is the latent heat of vaporization

Insert the parameters and solve;

         H  = 20g x 2260J/g

          H = 45200J

4 0
2 years ago
To determine the height of a flagpole, Abby throws a ball straight up and times it. She sees that the ball goes by the top of th
Kryger [21]

Answer:

H = 10.05 m

Explanation:

If the stone will reach the top position of flag pole at t = 0.5 s and t = 4.1 s

so here the total time of the motion above the top point of pole is given as

\Delta t = 4.1 - 0.5 = 3.6 s

now we have

\Delta t = \frac{2v}{g}

3.6 = \frac{2v}{9.8}

v = 17.64 m/s

so this is the speed at the top of flag pole

now we have

v_f - v_i = at

17.64 - v_i = (-9.8)(0.5)

v_i = 22.5 m/s

now the height of flag pole is given as

H = \frac{v_f + v_i}{2}t

H = \frac{22.5 + 17.64}{2} (0.5)

H = 10.05 m

5 0
2 years ago
Other questions:
  • The first modern atomic scientist was:
    6·2 answers
  • Mr. Hoffman, a science teacher, drove 10 miles to school from home in 20 minutes. He drove the 10 miles home in 30 min. His aver
    12·2 answers
  • While refrigerant 410a is a near azeotropic refrigerant, it is still best when charging to remove the r-410a as a _______ from t
    15·1 answer
  • the frequency of green light is 6×101^4 what is it's wavelengththe frequency of green light is 6 x 10 raise to power 14 what is
    7·1 answer
  • An initially motionless test car is accelerated uniformly to 120 km/h in 8.28 s before striking a simulated deer. The car is in
    15·1 answer
  • What type of bond is formed if atoms donate electrons to other atoms when the elements are combined?
    5·1 answer
  • What's the name for how you see the world through your perception<br> in cognitive theory.
    10·2 answers
  • Which of the following is NOT true about essential body fat? A. The human body would not function normally without essential bod
    7·2 answers
  • A 2.0-kg laptop sits on the horizontal surface of the seat of a car moving at 8.0 m/s. The driver starts slowing down to stop. F
    9·1 answer
  • Numerical
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!