Answer:
E = k Q / [d(d+L)]
Explanation:
As the charge distribution is continuous we must use integrals to solve the problem, using the equation of the elective field
E = k ∫ dq/ r² r^
"k" is the Coulomb constant 8.9875 10 9 N / m2 C2, "r" is the distance from the load to the calculation point, "dq" is the charge element and "r^" is a unit ventor from the load element to the point.
Suppose the rod is along the x-axis, let's look for the charge density per unit length, which is constant
λ = Q / L
If we derive from the length we have
λ = dq/dx ⇒ dq = L dx
We have the variation of the cgarge per unit length, now let's calculate the magnitude of the electric field produced by this small segment of charge
dE = k dq / x²2
dE = k λ dx / x²
Let us write the integral limits, the lower is the distance from the point to the nearest end of the rod "d" and the upper is this value plus the length of the rod "del" since with these limits we have all the chosen charge consider
E = k 
We take out the constant magnitudes and perform the integral
E = k λ (-1/x)
Evaluating
E = k λ [ 1/d - 1/ (d+L)]
Using λ = Q/L
E = k Q/L [ 1/d - 1/ (d+L)]
let's use a bit of arithmetic to simplify the expression
[ 1/d - 1/ (d+L)] = L /[d(d+L)]
The final result is
E = k Q / [d(d+L)]
The formula that can be used to obtain a convergent series is given by;
a/1 – r.
<h3>What is a series?</h3>
In mathematics, we define a series as sum of numbers which could be convergent or divergent. In a convergent series, the summation of the numbers approaches a given value.
The formula that can be used to obtain a convergent series is given by;
a/1 – r.
Learn more about a convergent series:brainly.com/question/15415793?
#SPJ11
Answer:
d
Explanation:
we need the tea to be at first moist in order to get much more flavor. then supersaturated so that it increases the concentration of the flavor by it not being too sweet nor too salty. so just right.
Answer:
makes you hungry is not a science based benefit of meditation