Answer:
Is 12° becz when it's will be gonto at minus then its effect in our body
Explanation:
I hope it's helpful for you
Total absorption of the light takes place in every image. There is no light left to proceed to our eyes, and that's why we can't see any of the images.
The absorption is so complete in each and every case, we can't even see enough to know how MANY images there are.
A sample of an ideal gas is heated, and its kelvin temperature doubles. The average speed of the molecules in the sample will increases by a factor of
The root-mean square (RMS) velocity is the value of the square root of the sum of the squares of the stacking velocity values divided by the number of values. The RMS velocity is that of a wave through sub-surface layers of different interval velocities along a specific ray path.
Root mean square speed is a statistical measurement of speed.
The root mean square speed can be calculated as : V1 : 
if temperature becomes double
let T1 is initial temperature
So , T2 = 2 * T1
now ,
Root mean square speed will be (V2) = 
=
* 
=
V1
Thus when temperature becomes double, the root mean square speed increases by a factor of
To learn more about root mean square velocity here
brainly.com/question/13751940
#SPJ4
Answer:
4.29 millimeters
Explanation:
Bats emit ultrasound waves: in air, ultrasound waves travel at a speed of

The frequency of the waves emitted by this bat is:

Therefore we can find the wavelength of the wave emitted by the bat by using the relationship between speed, frequency and wavelength:

Answer:
h=17357.9m
Explanation:
The atmospheric pressure is just related to the weight of an arbitrary column of gas in the atmosphere above a given area. So, if you are higher in the atmosphere less gass will be over you, which means you are bearing less gas and the pressure is less.
To calculate this, you need to use the barometric formula:

Where R is the gas constant, M the molar mass of the gas, g the acceleration of gravity, T the temperature and h the height.
Furthermore, the specific gas constant is defined by:

Therefore yo can write the barometric formula as:

at the surface of the planet (h =0) the pressure is ![P_0[\tex]. The pressure at the height requested is half of that:[tex]P=\frac{P_0}{2}](https://tex.z-dn.net/?f=P_0%5B%5Ctex%5D.%20The%20pressure%20at%20the%20height%20requested%20is%20half%20of%20that%3A%3C%2Fp%3E%3Cp%3E%5Btex%5DP%3D%5Cfrac%7BP_0%7D%7B2%7D)
applying to the previuos equation:

solving for h:
h=17357.9m