Answer:
35.3 N
Explanation:
U = 0, V = 0.61 m/s, s = 0.39 m
Let a be the acceleration.
Use third equation of motion
V^2 = u^2 + 2 as
0.61 × 0.61 = 0 + 2 × a × 0.39
a = 0.477 m/s^2
Force = mass × acceleration
F = 74 × 0.477 = 35.3 N
<span>Δ</span>E = q + w
q = heat (quantity of)
q and w can be positive or negative depending on if work/heat is being absorbed/done on the system or released/done by the system
At 4 m/s?
How do the two kinetic energies compare to one another? QUADRUPLES !
#3 What is the kinetic energy of a 2,000 kg bus that is moving at 30 m/s?
Potential energy
Lo experiences tidal heating primarily because lo’s elliptical orbit causes the tidal force on lo to vary as it orbits the Jupiter. Thus, lo’s elliptical orbit is essential to its tidal heating. This elliptical orbit, in turn, is an end result of the orbital resonance among lo, Europa and ganymade. This orbital resonance origin lo to have a more elliptical orbit than it would because lo intermittently passes Europa and ganymade in the same orbital position. We cannot perceive tidal forces of tidal heating in lo but rather we foresee that they must occur based on the orbital characteristic of the moons and active volcanoes on lo is the observational evidence that tidal heating is significant in lo.
different because joules law talks about heat produce in an electric whiles ohm' law talks about potential difference