<u>Answer:</u>
<h3>As electric current is carried in a cable, around it, a magnetic field is created. The lines of the magnetic fields form concentric circles around the wire. The direction of the magnetic field hinges on the direction of the current. It can be calculated by pointing the thumb of your right hand in the direction of the moment, using the "right hand law." The position of your curled fingers is in the magnetic field lines. The magnetic field magnitude depends on the sum of current, and the distance from the wire carrying the charge.</h3>
<u></u>
<u>Explanation:</u>
Determine the direction of vector B magnitude B: 

Resultant magnitude strength:
its direction is pointing to the left.
Note: Refer the image attached below
Answer:
The nail also magnatized .
Answer: 500 N
Explanation:
The formula to find the force exerted by a mass, we may use F = mg, where g, the gravity, and a, the acceleration, can be interchangeable in the formula.
1) F = 50 x 10
2) F = 500 N
Hope this helps, brainliest would be appreciated :)
Answer:
The tension force in the supporting cables is 7245N
Explanation:
There are two forces acting on the elevator: the force of gravity pointing down (+) with magnitude (elevator mass) x (gravitational acceleration), and the tension force of the cable pointing up (-) with an unknown magnitude F. The net force is the sum of these forces:

We are given the resulting acceleration along with the mass, i.e., we know the net force, allowing us to solve for F:

The tension force F in the supporting cables is 7245N