Benthos
Option b is the answer
Answer:
304.89m
Explanation:
Given
acceleration a = 2.52m/s²
final speed v = 39.2m/s
initial speed = 0m/s (car accelerates from rest)
Using the equation of motion below to get the distance of Doc brown from Marty;
v² = u²+2as
substitute the given parameters
39.2² = 0²+2(2.52)s
1536.64 = 0+5.04s
divide both sides by 5.04
1536.64/5.04 = 5.04s/5.04
rearrange the equation
5.04s/5.04 = 1536.64/5.04
s = 304.89m
Hence He and Marty must stand at 304.89m to allow the car to accelerate from rest to a speed of 39.2 m/s?
Answer:
v = 5.9 x 10⁷ m/s
Explanation:
The kinetic energy of the electron in terms of potential difference is given as:
--------------- equation (1)
where,
e = charge on electron = 1.6 x 10⁻¹⁹ C
V = Potential Difference = 9.9 KV = 9900 Volts
The kinetic energy in general is given as:
--------- equation (2)
where,
m = mass of electron = 9.1 x 10⁻³¹ kg
v = speed of electron = ?
Therefore, comparing equation (1) and equation (2), we get:

<u>v = 5.9 x 10⁷ m/s</u>
It will be stand 46.67 all i did was divide both numbers but im not sure if im right but i hope i am hope i helped:)
Answer:
The answer is "False"
Explanation:
The geologic time scale is the "schedule" for occasions in Earth history. It partitions time into named units of unique time called in descending order of duration "eons, eras, periods, epochs, and ages". The specification of those geologic time units depends on stratigraphy, which is the relationship and order of rock layers. The fossil structures that happen in the stones, nonetheless, give the central methods for setting up a geologic time scale, with the circumstance of the development and vanishing of far and wide species from the fossil record being used to outline the beginnings and endings of ages,, periods, and different stretches.
Geologic time is the broad time period involved by the geologic history of Earth. Formal geologic time starts toward the beginning of the Archean Eon (4.0 billion to 2.5 billion years back) and proceeds to the current day.