Answer:
C = 0.0125 m/s⁴. The calculation procedure can be found in the attachment below. The concept of motion along a straight line with constant acceleration has been applied to solve the problem.
Explanation:
The sign convention chosen in this problem solution is upwards as positive and downwards negative. The equation of motion v = u + at has been used to calculate the constant C as only one unknown is contained in this equation. This is so because we have been given the initial velocity, the acceleration and the time taken. To solve future problems of this kind, first thing to check for is an equation of motion with the least number of unknown. This helps to reduce the complexity of the problem solution.
Places with continental climates typically have hot summers and cold winters. As compared to places with mild climates, places with continental climates tend to experience the two extremes when it comes to the seasons. Summers can get very hot, and winters can get very cold.
Answer:
x = 4,138 m
Explanation:
For this exercise, let's use the rotational equilibrium equation.
Let's fix our frame of reference on the left side of the pivot, the positive direction for anti-clockwise rotation
∑ τ = 0
n₁ 0 - W L / 2 + n₂ 4 - W_woman x = 0
x = (- W L / 2 + 4n2) / W_woman
Let's reduce the magnitudes to the SI System
M = 6 lbs (1 kg / 2.2 lb) = 2.72 kg
M_woman = 130 lbs = 59.09 kg
Let's write the transnational equilibrium equation
n₁ + n₂ - W - W_woman = 0
n₁ + n₂ = W + W_woman
n₁ + n₂ = (2.72 + 59.09) 9.8
At the point where the system begins to rotate, pivot 1 has no force on it, so its relation must be zero (n₁ = 0)
n₂ = 605,738 N
Let's calculate
x = (-2.72 9.8 6/2 + 4 605.738) / 59.09 9.8
x = 4,138 m
If a conductor wire is heated, its resistance decreases and conductivity increases.