Answer : The equilibrium concentration of
in the solution is, 
Explanation :
The dissociation of acid reaction is:

Initial conc. c 0 0
At eqm. c-x x x
Given:
c = 

The expression of dissociation constant of acid is:
![K_a=\frac{[H_3O^+][C_6H_5COO^-]}{[C_6H_5COOH]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BC_6H_5COO%5E-%5D%7D%7B%5BC_6H_5COOH%5D%7D)

Now put all the given values in this expression, we get:
![6.3\times 10^{-5}=\frac{(x)\times (x)}{[(7.0\times 10^{-2})-x]}](https://tex.z-dn.net/?f=6.3%5Ctimes%2010%5E%7B-5%7D%3D%5Cfrac%7B%28x%29%5Ctimes%20%28x%29%7D%7B%5B%287.0%5Ctimes%2010%5E%7B-2%7D%29-x%5D%7D)

Thus, the equilibrium concentration of
in the solution is, 
Answer:
I believe that it is the 2nd option.
Explanation:
My reasonings are because C4H10O has 7 isomers. In which 4 are alcohol and the other 3 are ether.
The first option is ethers, specifically ethoxyethane.
The third option is ethers, specifically 1-methoxypropane.
The fourth option is an alcohol, specifically 1- butanol.
Therefore, leads us to the 2nd option that it is NOT an isomer of C4H10O
Your answer would be 250,000