1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alekssandra [29.7K]
3 years ago
8

A 50-cm-long spring is suspended from the ceiling. A 230g mass is connected to the end and held at rest with the spring unstretc

hed. The mass is released and falls, stretching the spring by 18cm before coming to rest at its lowest point. It then continues to oscillate vertically.
a. What is the spring constant? (K=)

b. What is the amplitude of the oscillation?

c. What is the frequency of the oscillation?

2. Suppose the free-fall accelaration at some location on earth was exactly 9.8000 m/s2. What would it be at the top of a 1100-m-tall toawer at this location?
Physics
1 answer:
alukav5142 [94]3 years ago
8 0

Answer:

k = 25.07 N/m

Amplitude = 9 cm

f = 1.66 Hz

Explanation:

Given:

- The original length of the spring L_o = 50 cm

- The mass hanged m = 230 g

- The amount of stretch given 2x = 18 cm @lowest point.

Find:

a. What is the spring constant? (K=)

b. What is the amplitude of the oscillation?

c. What is the frequency of the oscillation?

Solution:

- Make a FBD of the hanging mass, There are two external forces acting on it that is the force of gravity due to its weight and the springs restoring force when its stretched to its lowest point. After hanging the mass on the spring a new equilibrium position is achieved which also causes the spring to stretch. We can apply the Equilibrium conditions at this point in vertical direction as:

                                      k*x - m*g = 0

                                      k = m*g / x

Where, x is the extension of the spring or mean stretch. which 0.5*amplitude (Lowest point). x = 9 cm

                                      k = 0.23*9.81 / 0.09

                                      k = 25.07 N/m

Answer: For part a we have the stiffness of the spring k = 25.07 N/m

- The amplitude of the oscillating motion is the half the amount of total stretch or the amount the spring extends above or below the mean position.

                                       Amplitude = x = 9 cm

- The frequency of any oscillatory motion which can be modeled by SHM can be expressed as:

                                       f = 1 / 2*p*  sqrt ( k / m )

- Plug the values in:                                        

                                       f = 1 / 2*pi* sqrt (25.07 / 0.23 )

                                       f = 1.66 Hz

Answer: For part c the frequency of oscillation is f = 1.66 Hz

           

You might be interested in
Which of these letters is the symbol for current in equations A: c B: i C: r D: t
True [87]
  Answer:  [B]:  The letter, "<em /> I " ; for current;  in units of "Amps" .
__________________________________________________
4 0
3 years ago
What is the force on a 250 kg elevator that is falling freely at 9.8 m/sec2?​
Viefleur [7K]

Answer:

Since it is falling freely, the only force on it is its weight, w.

w = m × g = 250 kg × 9.8 m/s^2 = 2450 Newton/N

6 0
3 years ago
Read 2 more answers
An electron moves in a circular path perpendicular to a uniform magnetic field with a magnitude of 2.14 mT. If the speed of the
JulsSmile [24]

Answer:

(a) 3.9cm

(b) 1.66 x 10⁻⁸s

Explanation:

Since the electron is moving in a circular path, the centripetal acceleration needed to keep it from slipping off is provided by the magnetic force. This force (F), according to Newton's second law of motion is given by,

F = m x a          --------------(i)

Where;

m = mass of the particle

a = acceleration of the mass

The centripetal acceleration is given by;

a = v² / r          [v = linear velocity of particle, r = radius of circular path]

<em>Therefore, equation (i) becomes;</em>

F = m v²/ r             --------------------(ii)

The magnitude of the magnetic force on a moving charge in a magnetic field as stated by Lorentz's law is given by;

F = qvBsinθ          -------------(iii)

Where;

q = charge of the particle

v = velocity of the particle

B = magnetic field

θ = angle between the velocity and the magnetic field

<em>Combine equations (ii) and (iii) as follows;</em>

m (v² / r) = qvBsinθ         [divide both side by v]

m v / r = qBsinθ              [make r subject of the formula]

r = (m v) / (qBsinθ)              ---------(iv)

(a) From the question;

v = 1.48 x 10⁷m/s

B = 2.14mT = 2.14 x 10⁻³T

θ = 90°          [since the direction of velocity is perpendicular to magnetic field]

m = mass of electron = 9.11 x 10⁻³¹kg

q = charge of electron = 1.6 x 10⁻¹⁹C

Substitute these values into equation (iv) as follows;

r = (9.11 x 10⁻³¹ x 1.48 x 10⁷) / (1.6 x 10⁻¹⁹ x 2.14 x 10⁻³ sin 90°)

r = 3.9 x 10⁻²m

r = 3.9cm

Therefore, the radius of the circular path is 3.9cm

(b) The time interval required to complete one revolution is the period (T) of the motion of the electron and it is given by

T = d / v          --------------(*)

Where;

d = distance traveled in the circular path in one complete turn = 2πr

v = velocity of the motion = 1.48 x 10⁷m/s

d = 2 π (3.9 x 10⁻²)            [Take π = 22/7 = 3.142]

d = 2(3.142)(3.9 x 10⁻²) = 0.245m

Substitute the values of d and v into equation (*) as follows;

T = 0.245 / 1.48 x 10⁷

T = 0.166 x 10⁻⁷s

T = 1.66 x 10⁻⁸s

Therefore, the time interval is 1.66 x 10⁻⁸s

6 0
3 years ago
The corpus callosum is comprised of more than 200 million axons that connect the hemispheres of the brain. Please select the bes
mamaluj [8]

Hello, love! The answer is True, or T, on Edge2020.

Hope this helped!

~ V.

8 0
3 years ago
Read 2 more answers
In a 100 mm diameter horizontal pipe, a venturimeter of 0.5 contraction ratio has been fitted. The head of water on the meter wh
horrorfan [7]

Answer:

the rate of flow = 29.28 ×10⁻³ m³/s or 0.029 m³/s

Explanation:

Given:

Diameter of the pipe = 100mm = 0.1m

Contraction ratio = 0.5

thus, diameter at the throat of venturimeter = 0.5×0.1m = 0.05m

The formula for discharge through a venturimeter is given as:

Q=C_d\frac{A_1A_2}{\sqrt{A_1^2-A_2^2}}\sqrt{2gh}

Where,

C_d is the coefficient of discharge = 0.97 (given)

A₁ = Area of the pipe

A₁ = \frac{\pi}{4}0.1^2 = 7.85\times 10^{-3}m^2

A₂ = Area at the throat

A₂ = \frac{\pi}{4}0.05^2 = 1.96\times 10^{-3}m^2

g = acceleration due to gravity = 9.8m/s²

Now,

The gauge pressure at throat = Absolute pressure - The atmospheric pressure

⇒The gauge pressure at throat = 2 - 10.3 = -8.3 m (Atmosphric pressure = 10.3 m of water)

Thus, the pressure difference at the throat and the pipe = 3- (-8.3) = 11.3m

Substituting the values in the discharge formula we get

Q=0.97\frac{7.85\times 10^{-3}\times 1.96\times 10^{-3}}{\sqrt{7.85\times 10^{-3}^2-1.96\times 10^{-3}^2}}\sqrt{2\times 9.8\times 11.3}

or

Q=\frac{0.97\times15.42\times 10^{-6}\times 14.88}{7.605\times 10^{-3}}

or

Q = 29.28 ×10⁻³ m³/s

Hence, the rate of flow = 29.28 ×10⁻³ m³/s or 0.029 m³/s

5 0
3 years ago
Other questions:
  • Which device uses AC current to operate?
    7·2 answers
  • Do you think the benifits of nuclear power outweigh the potential drawbacks
    11·1 answer
  • A bungee cord can stretch, but it is never compressed. When the distance between the two ends of the cord is less than its unstr
    5·1 answer
  • An object is situated to the left of a lens. A ray of light from the object is close to and parallel to the principal axis of th
    5·1 answer
  • Which best describes the wavelength of a simple wave?
    7·1 answer
  • A thin rod (length = 2.97 m) is oriented vertically, with its bottom end attached to the floor by means of a frictionless hinge.
    10·1 answer
  • Identify the stage in cellular respiration that produces carbon dioxide as a waste product
    8·1 answer
  • A boy takes 20 minutes to cover 3.2 km on a bicycle find the speed in km/hr​
    10·1 answer
  • Are forces present even when there is no movement?
    15·1 answer
  • The small piston of a hydraulic press has an area of 3.2 in2. If the applied force is 2.0 lb, what must the area of the large pi
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!