Answer:
Cp = 0.237 J.g⁻¹.°C⁻¹
Explanation:
Amount of energy required by known amount of a substance to raise its temperature by one degree is called specific heat capacity.
The equation used for this problem is as follow,
Q = m Cp ΔT ----- (1)
Where;
Q = Heat = 640 J
m = mass = 125 g
Cp = Specific Heat Capacity = <u>??</u>
ΔT = Change in Temperature = 43.6 °C - 22 °C = 21.6 °C
Solving eq. 1 for Cp,
Cp = Q / m ΔT
Putting values,
Cp = 640 J / (125 g × 21.6 °C)
Cp = 0.237 J.g⁻¹.°C⁻¹
Answer:There are two atoms in the molecule.
Explanation: All gases are diatomic i.e they are covalently bonded to another atom of the same element in order to attain stability. O atom is usually unstable because of it's incompletely filled outermost shell.
Answer:
gahwidsuacsgsuacayau1joagavahiq8wtw8quavakiafabajozyavqhaigavayquata
Explanation:
vahaiqgahiavavqugafayqigqvsbjsiagwyeiwvvs
Boyle Law says “the pressure of fixed amount of ideal gas which is at constant temperature is
inversely proportional to its volume".<span>
P = 1/V
<span>Where, P is pressure of the ideal gas and V is volume of the ideal gas.</span>
<span>For two situations, this law can be added as;
P</span>₁V₁ = P₂V₂<span>
</span><span>14 lb/in² x V₁ = 70 lb/in² x 500 mL</span><span>
</span><span>V₁ =
2500 mL</span><span>
Hence, the needed volume of atmospheric air = 2500
mL
<span>Here, we made two </span>assumptions. They are,
1. The
atmospheric air acts as ideal gas.
2.
Temperature is a constant.
<span>We didn't convert the units to SI units since
converting volume and pressure are products of two numbers, they will cut off. </span></span></span>
The molecules or atoms that are formed by gain or loss of one or more valence electrons are said to be ions.
When atom loss one or more valence electrons, results in formation of cation whereas when atom gain one or more valence electrons, then formation of anion occurs. Cations carry positive charge and anions carry negative charge.
In general, cations are smaller than the neutral atoms from which they are formed and anions are larger than the neutral atoms.
As cations are smaller than the related neutral atoms because the valence electrons are lost which are farthest away from the nucleus. After that, taking more electrons distant from the cation results in reduction of radius of the ion.
Thus, aluminium cation consist of few electrons which results in fewer occupied energy levels by the electrons further results in reduction of radius i.e. smaller size.
Hence, given statement is true i.e. aluminium atom is larger than the aluminium cation as cation has fewer occupied energy levels.