It’s A. Land heats up and cools quickly then water
<h2>Question:- </h2>
A solution has a pH of 5.4, the determination of [H+].
<h2>Given :- </h2>
- pH:- 5.4
- pH = - log[H+]
<h2>To find :- concentration of H+</h2>
<h2>Answer:- Antilog(-5.4) or 4× 10-⁶</h2>
<h2>Explanation:- </h2><h3>Formula:- pH = -log H+ </h3>
Take negative to other side
-pH = log H+
multiple Antilog on both side
(Antilog and log cancel each other )
Antilog (-pH) = [ H+ ]
New Formula :- Antilog (-pH) = [+H]
Now put the values of pH in new formula
Antilog (-5.4) = [+H]
we can write -5.4 as (-6+0.6) just to solve Antilog
Antilog ( -6+0.6 ) = [+H]
Antilog (-6) × Antilog (0.6) = [+H]

put the value in equation
![{10}^{ - 6} \times 4 = [H+] \\ 4 \times {10}^{ - 6} = [H+]](https://tex.z-dn.net/?f=%20%7B10%7D%5E%7B%20-%206%7D%20%20%20%5Ctimes%204%20%3D%20%5BH%2B%5D%20%5C%5C%204%20%5Ctimes%20%20%20%7B10%7D%5E%7B%20-%206%7D%20%20%3D%20%5BH%2B%5D)
Answer:
1.20atm
Explanation:
Given parameters:
Partial pressure of gas 1 = 0.35atm
Partial pressure of gas 2 = 0.20atm
Partial pressure of gas 3 = 0.65atm
Unknown:
Total pressure of the gas mixture = ?
Solution:
To solve this problem, we need to recall and understand the Dalton's law of partial pressure.
Dalton's law of partial pressure states that "the total pressure of a mixture of gases is equal to the sum of the partial pressure of the constituent gases".
Total pressure =Pressure of gas(1 + 2 + 3)
The partial pressure is the pressure a gas would exert if it alone occupied the volume of the gas mixture.
Now we substitute;
Total pressure = (0.35 + 0.20 + 0.65)atm = 1.20atm
The strength of an Arrhenius base determines percentage of ionization of base and the number of OH⁻ ions formed.
Strong base completely ionize in water and gives a lot of hydroxide ions (OH⁻), for example sodium
hydroxide: NaOH(aq) → Na⁺(aq)
+ OH⁻(aq).
Weak base partially ionize in water and gives a few hydroxide ions (OH⁻), for example ammonia: NH₃ + H₂O(l) ⇄ NH₄⁺(aq) + OH⁻(aq).