Answer: The elevator must be accelerating.
Explanation:
As the tension force is opposing to the the force of gravity on the load which is hung vertically, and the tension force can adopt any value in order to comply with Newton's 2nd law, if the tension force is less than the force due to gravity, this means that all system is not in equilibrium, so it must be accelerating.
If we assume that the downward is the positive direction, we can write:
mg - T = ma
If T = 0.9 mg, ⇒ mg (1-0.9) =0.1 mg = m a ⇒a = 0.1 g , in downward direction.
Answer:
a strong wind.
showing rage.
a large undulating mass of something, typically cloud, smoke, or steam.
profoundly immoral and wicked.
Explanation:
<h2>please mark me brainliest please</h2>
I would say Emotional health. Just because it is more sensable
Answer:

Explanation:
The capacitance of the parallel-plate capacitor is given by:

where
is the vacuum permittivity
is the area of the plates
is the separation between the plates
Substituting,

The energy stored in the capacitor is given by

Since we know the energy

we can re-arrange the formula to find the charge, Q:

An electric generator is a device that converts mechanical energy obtained from an external source into electrical energy as the output.
It is important to understand that a generator does not actually ‘create’ electrical energy. Instead, it uses the mechanical energy supplied to it to force the movement of electric charges present in the wire of its windings through an external electric circuit. This flow of electric charges constitutes the output electric current supplied by the generator. This mechanism can be understood by considering the generator to be analogous to a water pump, which causes the flow of water but does not actually ‘create’ the water flowing through it.
The modern-day generator works on the principle of electromagnetic induction discovered by Michael Faraday in 1831-32. Faraday discovered that the above flow of electric charges could be induced by moving an electrical conductor, such as a wire that contains electric charges, in a magnetic field. This movement creates a voltage difference between the two ends of the wire or electrical conductor, which in turn causes the electric charges to flow, thus generating electric current.