Answer:

Explanation:
Hello!
In this case for the solution you are given, we first use the mass to compute the moles of CuNO3:

Next, knowing that the molarity has units of moles over liters, we can solve for volume as follows:

By plugging in the moles and molarity, we obtain:

Which in mL is:

Best regards!
We are most likely to find water in the form of gas in the atmosphere.
The charge balance equation for an aqueous solution of H₂CO₃ that ionizes to HCO₃⁻ and CO₃⁻² is [HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
<h3>What is Balanced Chemical Equation ?</h3>
The balanced chemical equation is the equation in which the number of atoms on the reactant side is equal to the number of atoms on the product side in an equation.
The equation for aqueous solution of H₂CO₃ is
H₂CO₃ → H₂O + CO₂
The charge balance equation is
[HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
Thus from the above conclusion we can say that The charge balance equation for an aqueous solution of H₂CO₃ that ionizes to HCO₃⁻ and CO₃⁻² is [HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
Learn more about the Balanced Chemical equation here: brainly.com/question/26694427
#SPJ4
Answer:
This question appears incomplete
Explanation:
However, an alpha hydrogen is the hydrogen that is found on the alpha, α-carbon in an organic molecule. Alpha carbon is referred to the first carbon that is attached to a functional group. Generally, compounds that do not have alpha carbon do not have alpha hydrogen. For example, first member of all functional groups do not usually have alpha carbon and hence do not have alpha hydrogen.
Also, Alkanes, alkenes and alkynes do not have also
The balanced chemical reaction is:
<span>Ca + Cl2 = CaCl2
</span>
We are given the amount of calcium metal to be used for this reaction. This will be the starting point for the calculations.
56 g Ca ( 1 mol Ca / 40.08 g Ca) (1 mol Cl2 / 1 mol Ca) ( 22.414 L Cl2 / 1 mol Cl2 ) = 31.32 L Cl2 gas produced from the reaction