1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jarptica [38.1K]
3 years ago
9

Please help I really need it​ please

Physics
1 answer:
Nana76 [90]3 years ago
4 0
What is the question?
You might be interested in
Train cars are coupled together by being bumped into one another. Suppose two loaded cars are moving toward one another, the fir
tia_tia [17]

Answer:

7560 Joules

Explanation:

m_1 = Mass of first car = 1.5\times 10^5\ kg

m_2 = Mass of second car = 2\times 10^5\ kg

u_1 = Initial Velocity of first car = 0.3 m/s

u_2 = Initial Velocity of second car = -0.12 m/s

v = Velocity of combined mass

As linear momentum of the system is conserved

m_1u_1 + m_2u_2 =(m_1 + m_2)v\\\Rightarrow v=\frac{m_1u_1 + m_2u_2}{m_1 + m_2}\\\Rightarrow v=\frac{1.5\times 10^5\times 0.3 + 2\times 10^5\times -0.12}{1.5\times 10^5 + 2\times 10^5}\\\Rightarrow v=0.06\ m/s

Energy lost is

\Delta E=\Delta E_i-\Delta E_f\\\Rightarrow \Delta=\frac{1}{2}(m_1u_1^2 + m_2u_2^2-(m_1+m_2)v^2)\\\Rightarrow \Delta=\frac{1}{2}(1.5\times 10^5\times 0.3^2 + 2\times 10^5\times (-0.12)^2-(1.5\times 10^5 + 2\times 10^5)\times 0.06^2)\\\Rightarrow \Delta=7560\ J

The Energy lost in the collision is 7560 Joules

7 0
3 years ago
What would happen if you put a material between each marble? Newton's Cradle
slamgirl [31]

Answer:

Explanation:

Momentum is the mass of a moving body times its velocity. It can be transferred from one object to another

5 0
3 years ago
Help mee pleaseee :)))
Anettt [7]

Answer:

See the explanation below.

Explanation:

Solving the first image question:

C ) The resulting force is defined by Newton's second law which tells us that the sum of the forces on a body is equal to the product of mass by acceleration. That is, there must be a force that acts on a body to produce an acceleration. If there is no acceleration it is because there are no external forces or developed by the body. And if there is no acceleration the body moves at a constant speed, in a straight line, so the response is C.

For the second image, we must remember that weight is defined as the product of mass by gravitational acceleration.

W = m*g

where:

W = weight [N]

m = mass [kg]

g = gravity acceleration [m/s²]

Now we have

m = 50 [kg]

ge = Earth gravity acceleration = 10 [m/s²]

gp = Distant planet gravity acceleration = 4 [m/s²]

We = ge*m

We = 10*50 = 500 [N]

Wp =gp*m

Wp = 4*50 = 200 [N]

Therefore the answer is D

For the third image, The mass is always going to be preserved, regardless of where the body or object is in space, its weight is the only one that changes since the gravitational force is modified. That is, the mass on the moon and on Earth will always be the same.

m = 70 [kg]

First, we must calculate the acceleration, by means of the following equation of kinematics.

v_{f} =v_{o} +a*t

where:

Vf = final velocity = 20 [m/s]

Vo = initial velocity = 0 (because stars from the rest)

a = acceleration [m/s²]

t = time = 4 [s]

20 = 0 + a*4

20 = 4*a

a = 5 [m/s²]

Now using Newton's second law which tells us that the total force acting on a body is equal to the product of mass by acceleration.

F = m*a

where:

F = force [N] (units of Newtons)

m = mass = 2 [kg]

a = acceleration = 5 [m/s²]

F = 2*5

F = 10 [N]

The body of Figure D, since a total force of 25 [N] to the left acts on it, in the rest of cases the force is zero or much less than 25 [N]

50 + 40 - 35 - 30 = F

F = 25 [N]

8 0
2 years ago
Every few hundred years most of the planets line up on the same side of the Sun.(Figure 1)Calculate the total force on the Earth
mylen [45]

Answer: 3.7 \times 10^{-4} N

Explanation:

The gravitational pull between two object is given by:

F = G\frac{Mm}{r^2}

Where M and m are the masses of the object, r is the distance between the masses and G = 6.67× 10⁻¹¹ m³kg⁻¹ s⁻² is the gravitational constant.

We have to calculate the net force on Earth due to Venus, Jupiter and Saturn when they are in one line. It means when they are the closest distance.

F_{net] = G\frac{M_eM_v}{r_v^2}+G\frac{M_eM_j}{r_j^2}+G\frac{M_eM_s}{r_s^2}

Mass of Earth, Me = 5.98 × 10²⁴ kg

Mass of Venus, Mv = 0.815 Me

Mass of Jupiter, Mj = 318 Me

Mass of Saturn, Ms = 95.1 Me

closest distance between Earth and Venus, rv = 38 × 10⁶ km = 0.25 AU

closest distance between Jupiter and Earth, rj = 588 × 10⁶ km = 3.93 AU

closest distance between Earth and Saturn, rs = 1.2 × 10⁹ km = 8.0 AU

where 1 AU = 1.5 × 10¹¹ m

Inserting the values:

F_{net} = G\frac{M_e\times 0.815 M_e}{(0.25AU)^2}+G\frac{M_e\times 318 M_e}{(3.93AU)^2}+G\frac{M_e\times 95.1 M_e}{(8.0AU)^2}\\ \Rightarrow F_{net} = \frac{(GM_e^2)}{(1AU)^2}(\frac{0.815}{0.25^2}+\frac{318}{3.93^2}+\frac{95.1}{8.0^2})=\frac{6.67\times 10^{-11} \times (5.98\times 10^{24})^2}{(1.5\times 10^{11})^2}(35.1) = 3.7 \times 10^{-4} N

4 0
3 years ago
Read 2 more answers
A 4kg object has a momentum of 12 kg*m/s, what is the objects velocity?
Bezzdna [24]
Momentum = mass x velocity
12 = 4 x v | ÷ both sides by 4
12 ÷ 4 =v
v= 3 m/s
8 0
2 years ago
Other questions:
  • Points A [at (2, 3) m] and B [at (5, 7) m] are in a region where the electric field is uniform and given by E = (4i+3j)N/C. What
    14·1 answer
  • Shawna is very knowledgeable about cars​
    9·1 answer
  • A body accelerate uniformly from rest at 0.2m/s for one-fifth of a minute. Calculate the distance covered by the body.​
    12·1 answer
  • Which of the following is not a part of a wave?
    15·2 answers
  • The voltage across a resistor is found to be 1.5 V. It is also found that there is a charge of 2 Coulombs passing through the re
    8·1 answer
  • Plz help me with this sheet?
    8·2 answers
  • At the end of photosynthesis, what does the plant do with OXYGEN?
    15·2 answers
  • a loaded sack of total mass is 1000 gramme falls down from the floor of a lorry 200cm high, calculate the workdone by the gravit
    13·1 answer
  • What is the wavelength associated with an electron with a velocity of 4.8x10*5 m/s?
    11·1 answer
  • The augue
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!