Answer:
26.82m/s
Explanation:
Given
Mass = m= 0.4kg
Initial Velocity = u = 0
Charge = 4.0E-5C
Distance= d = 0.5m
Object Charge = 2E-4C
First, we'll calculate the initial energy (E)
E = Potential Energy
PE = kQq / d
Where k = coulomb constant = 8.99E9Nm²/C²
Energy is then calculated by;
PE = 8.99E9 * 4E-5 * 2E-4 / 0.5
PE = 143.84J
Energy = Potential Energy = Kinetic Energy
K.E = ½mv² = 143.84J
½mv² = ½ * 0.40 * v² = 143.85
0.2v² = 143.85
v² = 143.85/0.2
v² = 719.25
v = √719.25
v = 26.81883666380777
v = 26.82m/s
Hence, the object is 26.82m/s fast when the cart moving is very far (infinity) from the fixed charge
The force require to keep grouper submerged is 8.207N.
According to Archimedes principle buoyant force of any object must equal to weight of fluid it displaced.
The expression for the force exerted to stay submerged in salt water is
F = F(b) - w(fish)
where F(b) = buoyant force
w(fish) = weight
now substitute w(b) for F(b)
→ F = Vρg - w(fish)
where V = volume of sea water
ρ = density of sea water
Now by Archimedes principle V = m(fish) / ρ(fish)
→ F = (m(fish) / ρ (fish) ) ρg - m(fish)g
F = (85 kg/1015 kg-m^-3) (1.025× 10³ kg-m^-3) (9.8 m/s^2)
- (85kg) × 9.8 m/s^2
F = 841.207N - 833N
F = 8.207 N
Hence, the force require to keep grouper submerged is 8.207N.
Learn more about Archimedes Principle here:
brainly.com/question/15076878
#SPJ4
Answer:
1).A mixture having a uniform composition where the components can't be seen separately and all components are in the same state best describes a solution. In chemistry, a solution is a homogeneous mixture composed of two or more substances.
Kinetic energy is formed when the object is in motion.
Potential energy is the energy that is formed relative to others.
One of the example is Corn flour factory.
Corn turned into flour by a windmill that moved by the waterfall. Movement of the mill is relative to the power given by waterfall (potential energy) and the spinning crushes the corn into flour (kinetic energy)
Answer:
2.59 T
Explanation:
Parameters given:
Current flowing through the wire, I = 29 A
Angle between the magnetic field and wire, θ = 90°
Magnetic force, F = 2.25 N
Length of wire, L = 3 cm = 0.03 m
The magnetic force, F, is related to the magnetic field, B, by the equation below:
F = I * L * B * sinθ
Inputting the given parameters:
2.25 = 29 * 0.03 * B * sin90
2.25 = 0.87 * B
=> B = 2.25/0.87
B = 2.59 T
The magnetic field strength between the poles is 2.59 T