<u>Answer:</u> The correct answer is Option d.
<u>Explanation:</u>
According to Lewis acid-base concept:
The substance which is donating electron pair is considered as Lewis base and the substance which is accepting electron pair is considered as Lewis acid.
For the given chemical reaction:

is accepting electron pair and is getting converted to
. Thus, it is considered as Lewis acid.
present in CuO is a Lewis base because it is donating electron pair.
Thus, the correct answer is Option d.
C
Speed is the time rate at which Sue covers the distance. It is derived by dividing the total distance covered by the total time taken to cover the distance . Usually SI unit for speed is km/h or mph or m/s.
Explanation:
Speed is also referred to as velocity- so the two are synonymous.
Acceleration is the rate at which speed is increasing. It is usually given by SI unit m/s². The opposite of acceleration is deceleration which is the rate at which speed is decreasing.
Distance is the measurement, in meters of kilometers or miles or yards..etc, that has been covered from one point to another.
Learn More:
For more on speed, velocity, distance and acceleration check out;
brainly.com/question/13874410
brainly.com/question/1822168
#LearnWithBrainly
Answer:
Explanation:
percentage abundance of third isotope = 100 - ( 78.900 + 10.009)
= 11.091 %
Atomic mass
24.1687 x .789 + 25.4830 x .10009 + 24.305 x .11091
19.069 + 2.5506 + 2.69566
= 24.3153 amu
Considering the ideal gas law, the volume of gas produced at 25.0 °C and 1.50 atm is 184.899 L.
<h3>Definition of ideal gas</h3>
An ideal gas is a theoretical gas that is considered to be composed of randomly moving point particles that do not interact with each other. Gases in general are ideal when they are at high temperatures and low pressures.
<h3>Ideal gas law</h3>
An ideal gas is characterized by absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law, an equation that relates the three variables if the amount of substance, number of moles n, remains constant and where R is the molar constant of gases:
P×V = n×R×T
<h3>Volume of gas</h3>
In this case, you know:
- P= 1.50 atm
- V= ?
- n= 500 g×
= 11.36 moles, being 44
the molar mass of CO₂ - R= 0.082

- T= 25 C= 298 K (being 0 C=273 K)
Replacing in the ideal gas law:
1.50 atm×V = 11.36 moles×0.082
× 298 K
Solving:
V= (11.36 moles×0.082
× 298 K) ÷ 1.50 atm
<u><em>V= 184.899 L</em></u>
Finally, the volume of gas produced at 25.0 °C and 1.50 atm is 184.899 L.
Learn more about the ideal gas law:
<u>brainly.com/question/4147359?referrer=searchResults</u>
The answer is A, between 0 and 7.
In a pH scale from 0 to 14, we can groups these numbers into acidic, neutral, and alkaline. 7 is the neutral pH value, therefore, 0-7 is always acidic, and 7-14 is alkaline.
The smaller the number is, the more acidic the solution will be. This applies same in alkalis, the larger the pH value is, the more alkaline the solution is.
We can measure the pH of solution with many methods, the easiest way include using a pH paper, more advanced and accurate methods includes using a pH meter.