The important point here is that volumetric flow rate in the pump and the pipe is the same.
Q = AV, where Q = Volumetric flow rate, A = Cross sectional area, V = velocity
Q (pump) = (π*15^2)/4*2 = 353.43 cm^3/s
Q (pipe) = (π*(3/10)^2)/4*V = 0.071V
Q (pump) = Q (pipe)
0.071V = 353.43 => V = 5000 cm/s
Therefore, the flow of water in the pipe is 5000 cm/s.
Answer:
It releases some of the energy into the atmosphere as hot steam.
Explanation:
The watch hand covers an angular displacement of 2π radians in 60 seconds.
ω = 2π/60
ω = 0.1 rad/s
v = ωr
v = 0.1 x 0.08
v = 8 x 10⁻³ m/s
It has to be the last one because whenever lights are turned on it decreases because all lights are on at the same time. It's good to just have one light on. It doesn't use as much electricity.
The answer here is prism. The light passing through prism experiences bending of its multiple wavelength composition which allows it to visibly shows the difference in each of the light's color wavelength, violet bending the most while the least is the color red.