<span>The "exosphere" is the most distant and tenuous "layer" of our atmosphere.</span>
Answer:
Three things about our body's systems:
All systems have a method of self-regulation or exogenous regulation by other systems.
All systems have a balance in their functions.
All the systems of our organism are intertwined with each other thus giving general vitality.
Explanation:
Best known systems:
Renal, respiratory, circulatory, cardiac, nervous, immune, blood, muscular systems.
All of them include the participation of one or more organs
1) <u>Stereo-selective (or enantioselective)</u> reactions form predominately or exclusively one enantiomer.
2) Epoxidation is the addition of a single oxygen atom to an alkene to form an epoxide.
3) <u>Hydrogenation (or reduction)</u> of an alkene forms an alkane by addition of H₂.
4) <u>Dihydroxylation</u> is the addition of two hydroxy groups to a double forming, a 1,2-diol or glycol.
5) <u>oxidative</u> cleavage of an alkene breaks both the σ and π bonds of the double bond to form two carbonyl groups.
6) <u>Regioselective</u> reactions form predominately or exclusively one constitutional isomer.
7) <u>Syn</u> dihydroxylation results when an alkene is treated KMnO4 or OsO4, where each reagent adds two oxygen atoms to the same side of the double bond.
Explanation:
The halogen family and noble gases are similar in just one particular way, they are groups of non-metals. All members of these two groups are categorized as non-metals.
Here are some of the differences between them;
- Halogens have 7 electrons in their outermost shell whereas noble gases have 8 electrons in theirs.
- Halogens are highly reactive elements, noble gases are non-reactive.
- Halogens are made up of electronegative elements where as noble gases are neither electropositive nor electronegative.
For the reactants,
- The oxidation number of hydrogen = +1
- The oxidation number of oxygen = -2
- The oxidation number of arsenic = +5
- The oxidation number of carbon = +3
For the products,
- The oxidation number of hydrogen = +1
- The oxidation number of oxygen = -2
- The oxidation number of arsenic = +3
- The oxidation number of carbon = +4
Here, arsenic (+5 to +3) and carbon (+3 to +4) are the only oxidation numbers changing.
Note that an increase in oxidation number means electrons are lost. Thus oxidation is occurring, and a decrease in oxidation number means electrons are being gained, and thus reduction is occurring.
Also, the compound that contains the element being oxidized is the reducing agent, and the compound that contains the element being reduced is the oxidizing agent.
So, the answers are:
name of the element oxidized: Carbon
name of the element reduced: Arsenic
formula of the oxidizing agent: 
formula of the reducing agent: 