Answer:
(1) A sound wave a mechanical wave because mechanical waves rely on particle interaction to transport their energy, they cannot travel through regions of space that are void of particles. Sound is a mechanical wave and cannot travel through a vacuum. These particle-to-particle, mechanical vibrations of sound conductance qualify sound waves as mechanical waves. Sound energy, or energy associated with the vibrations created by a vibrating source, requires a medium to travel, which makes sound energy a mechanical wave. The answer is(B) it travels in the medium.
(2) An ocean wave is an example of a mechanical transverse wave
The compression is the part of the compressional wave where the particles are crowded together. The rarefaction is the part of the compressional wave where the particles are spread apart. The answer is (C) Compression.
Because dark line spectra result from passing white light through ionized gasses and plasmas, which is what the atmosphere of stars are made of. These frequencies are scattered by the star's atmosphere as it leaves the surface (photosphere) of the star, and don't make it to earth.
Answer:
the blue shopping cart.
Explanation:
The blue shopping cart doesnt have to worry about running someone over in the front. The red one does, so it slows down more.
Answer:
The new speed is 56.25 miles/hour.
Explanation:
Since speed = distance/time;
time = distance/speed.
While driving at 50 miles/hour, time taken for one to complete 1 mile is (1/50) hour
(1/50) hour = (1/50) × 3600s = 72 seconds.
So, if this time to complete 1 mile (72 seconds) is reduced by 8 seconds,
New time to complete 1 mile will be = 72 - 8 = 64 seconds = (64/3600) hour = 0.0178 hour
New speed would be = (1 mile/64 seconds) = (1 mile/0.0178 hour) = 56.25 miles/hour.
Hope this Helps!!!
To solve this problem we will apply the concept of magnification, which is given as the relationship between the focal length of the eyepieces and the focal length of the objective. This relationship can be expressed mathematically as,

Here,
= Magnification
= Focal length eyepieces
= Focal length of the Objective
Rearranging to find the focal length of the objective

Replacing with our values


Therefore the focal length of th eobjective lenses is 27.75cm