Answer:
V₂ = 15.00 atm
Explanation:
Given data:
Initial pressure = 5.00 atm
Initial volume = 3.00 L
Final pressure = 760 mmHg ( 760/760 = 1 atm)
Final volume = ?
Solution:
P₁V₁ = P₂V₂
V₂ = P₁V₁ / P₂
V₂ = 5.00 atm × 3.00 L / 1 atm
V₂ = 15.00 atm
Answer:
The options are not given, here are the options.
metal
a. Metal
b. a metalloid
c. a non-metal
d. a gas
The correct option is C.
Non metal
Explanation:
Henry should classify it as non metals because non metals are substances or elements that are poor conductors of heat and electricity they break easily I .e meaning they lack the ducibility of metals, meaning they cannot be stretched, they are brittle, they are not shiny and does not reflect light, they have high electronegativities that is they have atoms that can hold electrons to what they have.
We need to know the relationship between atmospheric pressure and the density of gas particles in an area of increasing pressure.
The relationship is: As air pressure in an area increases, the density of the gas particles in that area increases.
For any gaseous substance, density of gas is directly proportional to pressure of gas.
This can be explained from idial gas edquation:
PV=nRT
PV=
RT [where, w= mass of substance, M=molar mass of substance]
PM=
RT
PM=dRT [where, d=density of thesubstance]
So, for a particular gaseous substance (whose molar mass is known), at particular temperature, pressure is directly related to density of gaseous substance.
Therefore, as air pressure in an area increases, the density of the gas particles in that area increases.
Carbon dioxide can’t exist in three states; Gas, Liquid & Solid. At normal temperatures and pressures, CO2 is colorless with a slightly pungent odor at high concentrations. If compressed and cooled to proper temperature the gas liquifies. Solid CO2, (dry ice) sublimates back to the natural gaseous state.