Answer:
T = 2.82 seconds.
The frequency 
Amplitude A = 25.5 cm
The maximum speed of the glider is 
Explanation:
Given that:
the time taken for 11 oscillations is 31 seconds ;
SO, the time taken for one oscillation is :

T = 2.82 seconds.
The formula for calculating frequency can be expressed as :



The amplitude is determined by using the formula:

The limits that the spring makes the oscillations are from 10 cm to 61 cm.
The distance of the glider is, d = (61 - 10 )cm = 51 cm
Replacing 51 for d in the above equation

A = 25.5 cm
The maximum speed of the glider is:

where ;






Answer:
True
Explanation:
I am not 100% on the answer for this question but i hope it was right
Answer:
Centripetal force is the force that keeps the yoyo going in a circle, if the string breaks, the yoyo would would fly off in a direction that is different to the point on the circle.
Traveling against currents usually takes longer. Kinda like walking against the wind, you feel the heaviness against your jacket as you push through it. Where when you walking with the wind, it kind of gives your a push. Same for with currents.
Answer:
ε = 2 V/cm
Explanation:
To calculate the mobility inside this bar, we just need to apply the expression that let us determine the mobility. This expression is the following:
ε = ΔV / L
Where:
ε: Hole mobility inside the bar
ΔV: voltage applied in the bar
L: Length of the bar
We already have the voltage and the length so replacing in the above expression we have:
ε = 2 V / 1 cm
<h2>
ε = 2 V/cm</h2><h2>
</h2>
The data of the speed can be used for further calculations, but in this part its not necessary.
Hope this helps