1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DerKrebs [107]
3 years ago
7

A 54 kg person stands on a uniform 20 kg, 4.1 m long ladder resting against a frictionless wall.

Physics
1 answer:
SVETLANKA909090 [29]3 years ago
7 0

A) Force of the wall on the ladder: 186.3 N

B) Normal force of the ground on the ladder: 725.2 N

C) Minimum value of the coefficient of friction: 0.257

D) Minimum absolute value of the coefficient of friction: 0.332

Explanation:

a)

The free-body diagram of the problem is in attachment (please rotate the picture 90 degrees clockwise). We have the following forces:

W=mg: weight of the ladder, with m = 20 kg (mass) and g=9.8 m/s^2 (acceleration of gravity)

W_M=Mg: weight of the person, with M = 54 kg (mass)

N_1: normal reaction exerted by the wall on the ladder

N_2: normal reaction exerted by the floor on the ladder

F_f = \mu N_2: force of friction between the floor and the ladder, with \mu (coefficient of friction)

Also we have:

L = 4.1 m (length of the ladder)

d = 3.0 m (distance of the man from point A)

Taking the equilibrium of moments about point A:

W\frac{L}{2}sin 21^{\circ}+W_M dsin 21^{\circ} = N_1 Lsin 69^{\circ}

where

Wsin 21^{\circ} is the component of the weight of the ladder perpendicular to the ladder

W_M sin 21^{\circ} is the component of the weight of the man perpendicular to the ladder

N_1 sin 69^{\circ} is the component of the normal  force perpendicular to the ladder

And solving for N_1, we find the force exerted by the wall on the ladder:

N_1 = \frac{W}{2}\frac{sin 21^{\circ}}{sin 69^{\circ}}+W_M \frac{d}{L}\frac{sin 21^{\circ}}{sin 69^{\circ}}=\frac{mg}{2}\frac{sin 21^{\circ}}{sin 69^{\circ}}+Mg\frac{d}{L}\frac{sin 21^{\circ}}{sin 69^{\circ}}=\frac{(20)(9.8)}{2}\frac{sin 21^{\circ}}{sin 69^{\circ}}+(54)(9.8)\frac{3.0}{4.1}\frac{sin 21^{\circ}}{sin 69^{\circ}}=186.3 N

B)

Here we want to find the magnitude of the normal force of the ground on the ladder, therefore the magnitude of N_2.

We can do it by writing the equation of equilibrium of the forces along the vertical direction: in fact, since the ladder is in equilibrium the sum of all the forces acting in the vertical direction must be zero.

Therefore, we have:

\sum F_y = 0\\N_2 - W - W_M =0

And substituting and solving for N2, we find:

N_2 = W+W_M = mg+Mg=(20)(9.8)+(54)(9.8)=725.2 N

C)

Here we have to find the minimum value of the coefficient of friction so that the ladder does not slip.

The ladder does not slip if there is equilibrium in the horizontal direction also: that means, if the sum of the forces acting in the horizontal direction is zero.

Therefore, we can write:

\sum F_x = 0\\F_f - N_1 = 0

And re-writing the equation,

\mu N_2 -N_1 = 0\\\mu = \frac{N_1}{N_2}=\frac{186.3}{725.2}=0.257

So, the minimum value of the coefficient of friction is 0.257.

D)

Here we want to find the minimum coefficient of friction so the ladder does not slip for any location of the person on the ladder.

From part C), we saw that the coefficient of friction can be written as

\mu = \frac{N_1}{N_2}

This ratio is maximum when N1 is maximum. From part A), we see that the expression for N1 was

N_1 = \frac{W}{2}\frac{sin 21^{\circ}}{sin 69^{\circ}}+W_M \frac{d}{L}\frac{sin 21^{\circ}}{sin 69^{\circ}}

We see that this quantity is maximum when d is maximum, so when

d = L

Which corresponds to the case in which the man stands at point B, causing the maximum torque about point A. In this case, the value of N1 is:

N_1 = \frac{W}{2}\frac{sin 21^{\circ}}{sin 69^{\circ}}+W_M \frac{L}{L}\frac{sin 21^{\circ}}{sin 69^{\circ}}=\frac{sin 21^{\circ}}{sin 69^{\circ}}(\frac{W}{2}+W_M)

And substituting, we get

N_1=\frac{sin 21^{\circ}}{sin 69^{\circ}}(\frac{(20)(9.8)}{2}+(54)(9.8))=240.8 N

And therefore, the minimum coefficient of friction in order for the ladder not to slip is

\mu=\frac{N_1}{N_2}=\frac{240.8}{725.2}=0.332

Learn more about torques and equilibrium:

brainly.com/question/5352966

#LearnwithBrainly

You might be interested in
FIRST ANSWER GET'S BRAINLIEST!!!!
Nuetrik [128]

Answer:

Earth's water is always in movement, and the natural water cycle, also known as the hydrologic cycle, describes the continuous movement of water on, above, and below the surface of the Earth. Water is always changing states between liquid, vapor, and ice, with these processes happening in the blink of an eye and over millions of years.

Hope this helped!! :))

Explanation:

6 0
3 years ago
Read 2 more answers
Which of the following is evidence that supports the idea of uniformitarianism?
Inga [223]
D. rates of soil erosion are much lower during droughts that last several years
5 0
3 years ago
Which of the following is not the result of nuclear decay.
svlad2 [7]

Answer:it’s c

Explanation:

7 0
3 years ago
How did the magnet’s density measurement using the Archimedes’ Principle compare to the density measurement using the calculated
guapka [62]

Answer:

The two methods will yield different results as one is subject to experimental errors that us the Archimedes method of measurement, the the density measurement method will be more accurate

Explanation:

This is because the density method using the calculated volume will huve room for less errors that's occur in practical method i.e Archimedes method due to human error

5 0
3 years ago
The gold has a density of 19300 kg/m3 calculate the mass of one gold bar 1= 2.54cm
icang [17]
Fair enough, but you'll have to tell us the volume of the bar first.
5 0
3 years ago
Other questions:
  • At high speeds, a particular automobile is capable of an acceleration of about 0.540 m/s^2. At this rate, how long (in seconds)
    8·1 answer
  • What is first and second conditions of equilibrium?
    6·1 answer
  • On a coordinate plane, vertex A for triangle ABC is located at (6,4). Triangle ABC is dilated by a scale factor of 0.5 with the
    12·1 answer
  • The product of voltage times amperage is known as what?
    8·1 answer
  • If position vector r = bt^2i + ct^3j, where b and c are positive constants, when does the velocity vector make an angle of 450 w
    10·1 answer
  • The note "Middle C" is known to have a frequency of 261.6 Hz. What would
    10·1 answer
  • PLEASEEEEEE HELLPPPP
    10·1 answer
  • An object is 9.00 cm tall. The image is 5.76 cm tall, and 14 cm
    5·1 answer
  • What is perfect machine ​
    6·2 answers
  • The metal case of the stove gets hot when the fire is lit. Here is some information about the stove
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!