I got you b, V(final)^2=V(initial+2acceleration*displacement
So this turns to (0m/s)^2=(50m/s)^2+2(9.8)(d) so just flip it all around to isolate d so you get
-(50m/s)^2/2(9.8) = d so you get roughly 12.7555 meters up
Answer:
4.7 x 10³ rad / s
Explanation:
During the time light goes and comes back , one slot is replaced by next slot while rotating before the light source
Time taken by light to travel a distance of 2 x 500 m is
= (2 x 500) / 3 x 10⁸
= 3.333 x 10⁻⁶ s .
In this time period, two consecutive slots come before the source of light one after another by rotation. There are 400 slots so time taken to make one rotation
= 3.333 x 10⁻⁶ x 400
= 13.33 x 10⁻⁴ s
This is the time period so
T = 13.33 X 10⁻⁴
Angular speed
= 2π / T
= 
4.7 x 10³ rad / s
Use the Inverse square law, Intensity (I) of a light is inversely proportional to the square of the distance(d).
I=1/(d*d)
Let Intensity for lamp 1 is L1 distance be D1 so on, L2 D2 for Intensity for lamp 2 and its distance.
L1/L2=(D2*D2)/(D1*D1)
L1/15=(200*200)/(400*400)
L1=15*0.25
L1=3.75 <span>candela</span>
The common value for “Speed of light in vacuum” is
metre per second.
Answer: Option b
<u>Solution:
</u>
Speed of light can be defined as the speed with which light waves propagate in different medium. In vacuum, speed of light is 186,282 miles per second or 299,792 km/s which is rounded off as
.
“Speed of light in vacuum” is a universal constant and usually represented by ‘c’. Light waves travels at a speed of
metre per second in vacuum.
<span>The isotope of an atom containing 40 protons and 51 neutrons suddenly has 2 neutrons added to it
That is X-93 so it will be
</span><span>Zirconium-93
</span>hope it helps