When amino acids are linked together, they form a peptide bond. When it joins two amino acids, it forms a dipeptide bond. When a long chain of amino acids are joined by peptide bonds, it becomes a protein. As shown in the picture, it loses H-OH molecules.
So, it will appear in the product side as a H₂O molecule.
Answer:
A. True
B. False
C. False
D. True
E. False
Explanation:
A. The proximal histidine covalently binds iron.
This statement is true because the proximal histidine is covalently bonded to the fifth coordination position of iron in myoglobin
B. The distal histidine covalently binds oxygen.
This statement is false because the distal histidine interacts with the oxygen covalently bonded to the sixty coordination position of iron by means of a hydrogen bond not a covalent bond.
C. The distal histidine binds iron
This statement is false because the distal histidine is not bonded to iron but to oxygen but stabilizes the oxygen bonded to iron
D. Free heme binds CO with the Fe, C and O atoms in a linear array.
This statement is true because free heme has more affinity for CO than O2 as it has the least steric hindrance when the Fe, C, and O atoms lie in a straight line. On the other hand, when O2 binds to free heme, the axis of the oxygen molecule is positioned at an angle to the Fe-O bond thereby producing significant steric hindrance.
E. The iron in heme binds the oxygen atom of CO.
This statement is false because the iron in heme binds to the carbon atom, C, of CO rather than to oxygen atom.
Answer:
3.0585147719047385 is the answer
The rate of diffusion change would increase if the PO₂ in the capillaries was 40 mmHg and the PO₂ in the muscle cell changed from 40 to 20 mmHg.
Simple diffusion is the movement of molecular substances from a region of higher concentration to lower concentration. The mechanism with which the movement of O₂ travels from the blood to the body tissues takes place with the use of simple diffusion.
Now, if PO₂ changes from 40 → 20 mmHg in the muscle cells, and the PO₂ in the blood = 40mmHg. It implies that the pressure gradient(P) has increased. As such, there is an increase in the rate of diffusion of oxygen from the blood to muscle cells.
Learn more about diffusion here:
brainly.com/question/14392880?referrer=searchResults