Answer:
c. 
Explanation:
= Initial distance between asteroid and rock = 7514 km = 7514000 m
= Final distance between asteroid and rock = 2823 km = 2823000 m
= Initial speed of rock = 136 ms⁻¹
= Final speed of rock = 392 ms⁻¹
= mass of the rock
= mass of the asteroid
Using conservation of energy
Initial Kinetic energy of rock + Initial gravitational potential energy = Final Kinetic energy of rock + Final gravitational potential energy

The energy absorbed by photon is 1.24 eV.
This is the perfect answer.
False, <span>Nanotechnology is proving effective at helping clean up PCB’s.</span>
Answer:
h = 2.49 [m]
Explanation:
In order to solve this problem we must use the definition of potential energy, which tells us that energy is equal to the product of mass by gravity by height.
The potential energy can be calculated by means of this equation:
Ep = m*g*h
where:
Ep = potential energy = 980 [J]
m = mass = 40 [kg]
g = gravity acceleration = 9.81 [m/s^2]
h = elevation [m]
Now replacing:
980 = 40*9.81*h
h = 2.49 [m]