Answer:
C
Explanation:
looking at a periodic table X is fluorine and Y is potassium
Fluorine is in group 7 and forms a 1- charge (which gains electrons) and potassium is in group 1 and forms a 1+ charge (which loses electrons)
Fluorine (X) has an electronic structure of 2,7 and needs to gain an electron from Potassium (Y) to have a full outer shell and potassium has an electronic structure of 2,8,8,1 so needs to lose an electron to have a full outer shell as well. This means that the electron that potassium (Y) has lost is given away to fluorine (X), so both elements become stable.
This is known as ionic bonding where metals (like potassium) lose electrons and non-metals (like fluorine) gain electrons to become more stable, forming ions
Any further clarification let me know
I believe the correct answer would be option 4. The only statement that is true would be that it is difficult to responsibly dispose of nuclear waste products. This is because nuclear waste products are radioactive and are very harmful to the society and to the environment. It could cause serious damage to every being in contact to it.
Rubidium or strontium have larger a larger atomic radius since the further left on the periodic table you go, the larger the sizes of the atoms are. This trend can be explained through effective nuclear charge which explains how the further left and down you go, the less the atoms nucleus is able to pull in the electrons around it.<span />
The answer is going to be hydrochloric acid, therefore hydrochloric acid is a binary acid.
I would agree with the second one, not the first. You can't always see the chemical reaction, and it isn't always sudden. But the second claim is true.