The electric force acting on the charge is given by the charge multiplied by the electric field intensity:

where in our problem

and

, so the force is

The initial kinetic energy of the particle is zero (because it is at rest), so its final kinetic energy corresponds to the work done by the electric force for a distance of x=4 m:
Answer:
B. people with OCD know their disorder is irrational
Explanation:
Got it right
The displacement of the object as determined from the velocity-time graph is 562.5 m.
<h3>What is a velocity-time graph?</h3>
A velocity-time graph is a graph of the velocity of an object plotted in the vertical or y-axis of the graph against the time taken on the horizontal or x-axis.
The displacement of an object can be obtained from its velocity-time graph by calculating the total area under the graph.
The total area under the graph = area of triangle + area of rectangle
Area of triangle = b*h/2 =
Area of triangle = 25 * (35 - 10)/2 = 312.5 m
Area of rectangle = l * b
Area of rectangle = 10 * 25 = 250 m
Total area = (312.5 + 250) m
Total area = 562.5 m
Therefore, the displacement of the object is 562.5 m
In conclusion, the total area of a velocity-time graph gives the displacement.
Learn more about velocity-time graph at: brainly.com/question/28064297
#SPJ1
Answer:
B = 191.26 cm
θ = -14.73°
Explanation:
given,
magnitude of the first displacement(A) = 146 cm
at an angle of 124°
resultant magnitude = 137 cm
and angle made with x-axis by the resultant(R) = 32.0°
component of A in X and Y direction
A x = A cos θ = 146 cos 120° = -73 cm
A y = A sin θ = 146 sin 120° = 126.4 cm
now component of resultant in x and y direction
R x = 137 cos 35°
= 112.2 cm
R y = 137 sin 35°
= 78.6 cm
resultant is the sum of two vectors
R = A + B
R x = A x + B x
B x = 112.2 - (-73) = 185.2 cm
B y = R y - A y
B y = 78.6 - 126.4 = -47.8 cm
magnitude of B
B = 
B = 
B = 191.26 cm
angle
θ = -14.73°