Answer:
15 m/s or 1500 cm/s
Explanation:
Given that
Speed of the shoulder, v(h) = 75 cm/s = 0.75 m/s
Distance moved during the hook, d(h) = 5 cm = 0.05 m
Distance moved by the fist, d(f) = 100 cm = 1 m
Average speed of the fist during the hook, v(f) = ? cm/s = m/s
This can be solved by a very simple relation.
d(f) / d(h) = v(f) / v(h)
v(f) = [d(f) * v(h)] / d(h)
v(f) = (1 * 0.75) / 0.05
v(f) = 0.75 / 0.05
v(f) = 15 m/s
Therefore, the average speed of the fist during the hook is 15 m/s or 1500 cm/s
Answer:
The intensity of sound (I) = 3.16 x 10⁻⁶ W/m²
Explanation:
We have expression for sound intensity level (SIL),

Here we need to find the intensity of sound (I).

Substituting
L = 67 dB and I₀ = 10⁻¹² W/m² in the equation

The intensity of sound (I) = 3.16 x 10⁻⁶ W/m²
Answer:
This depends on the writers
if they want they can make spiderman deny the laws of nature
Answer:
966 mph
Explanation:
Using as convention:
- East --> positive x-direction
- North --> Positive y-direction
The x- and y- components of the initial velocity of the jet can be written as

While the components of the velocity of the wind are

So the components of the resultant velocity of the jet are

And the new speed is the magnitude of the resultant velocity:
