The more focused the rays are, the more energy an area receives, and the warmer it is. The lowest latitudes get the most energy from the Sun. The highest latitudes get the least. The difference in solar energy received at different latitudes drives atmospheric circulation.
Explanation:
The given data for case (1) is as follows.
h = 20 cm = 0.2 m
Assuming that a rectangular slab is placed above the pipe and we will calculate the heat transfer as follows.
Q =
where, A = area
L = length
k = thermal conductivity = 0.8 W/m
= change in temperature.
Therefore, putting the given values into the above formula as follows.
Q =
=
= 168 W
For case (2), h = 180 cm = 1.8 m
Therefore, heat lost will be calculated as follows.
Q =
=
= 18.67 W
Thus, we can conclude that 18.67 W heat lost if the pipe was buried at a depth of 180 cm.
Answer:
Option B is correct.
4
Explanation:
We know that an atom consist of electron, protons and neutrons. Protons and neutrons are present with in nucleus while the electrons are present out side the nucleus.
All these three subatomic particles construct an atom. A neutral atom have equal number of proton and electron. In other words we can say that negative and positive charges are equal in magnitude and cancel the each other. For example, if neutral atom has 6 protons than it must have 6 electrons. The sum of neutrons and protons is the mass number of an atom while the number of protons are number of electrons is the atomic number of an atom.
In given problem we are given with 2 neutrons of helium. We know that the atomic number of He is 2. Thus Mass number of He is,
Number of neutrons + number of proton
2 + 2 = 4
Thus, option B is correct.
None a lot of hand or sum
Answer:
This is the balanced equation:
Pb(NO₃)₂ (aq) + 2NaI (aq) → 2NaNO₃ (aq) + PbI₂ (s) ↓
Explanation:
This are the reactants:
PbNO₃
NaI
Iodide can react to Pb²⁺ to make a solid compound.