1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
skelet666 [1.2K]
3 years ago
14

The particle, initially at rest, is acted upon only by the electric force and moves from point a to point b along the x axis, in

creasing its kinetic energy by 4.80×10−19 JJ . In what direction and through what potential difference Vb−VaVb−Va does the particle move?
Physics
1 answer:
bezimeni [28]3 years ago
8 0

1) Potential difference: 1 V

2) V_b-V_a = -1 V

Explanation:

1)

When a charge moves in an electric field, its electric potential energy is entirely converted into kinetic energy; this change in electric potential energy is given by

\Delta U=q\Delta V

where

q is the charge's magnitude

\Delta V is the potential difference between the initial and final position

In this problem, we have:

q=4.80\cdot 10^{-19}Cis the magnitude of the charge

\Delta U = 4.80\cdot 10^{-19}J is the change in kinetic energy of the particle

Therefore, the potential difference (in magnitude) is

\Delta V=\frac{\Delta U}{q}=\frac{4.80\cdot 10^{-19}}{4.80\cdot 10^{-19}}=1 V

2)

Here we have to evaluate the direction of motion of the particle.

We have the following informations:

- The electric potential increases in the +x direction

- The particle is positively charged and moves from point a to b

Since the particle is positively charged, it means that it is moving from higher potential to lower potential (because a positive charge follows the direction of the electric field, so it moves away from the source of the field)

This means that the final position b of the charge is at lower potential than the initial position a; therefore, the potential difference must be negative:

V_b-V_a = - 1V

You might be interested in
Determine if a sentence is an argument?​
Aneli [31]

Answer:

The tone really matters and if there are any exclamation marks also.

Explanation:

5 0
2 years ago
A torque of 36.5 N · m is applied to an initially motionless wheel which rotates around a fixed axis. This torque is the result
vivado [14]

Answer:

21.6\ \text{kg m}^2

3.672\ \text{Nm}

54.66\ \text{revolutions}

Explanation:

\tau = Torque = 36.5 Nm

\omega_i = Initial angular velocity = 0

\omega_f = Final angular velocity = 10.3 rad/s

t = Time = 6.1 s

I = Moment of inertia

From the kinematic equations of linear motion we have

\omega_f=\omega_i+\alpha_1 t\\\Rightarrow \alpha_1=\dfrac{\omega_f-\omega_i}{t}\\\Rightarrow \alpha_1=\dfrac{10.3-0}{6.1}\\\Rightarrow \alpha_1=1.69\ \text{rad/s}^2

Torque is given by

\tau=I\alpha_1\\\Rightarrow I=\dfrac{\tau}{\alpha_1}\\\Rightarrow I=\dfrac{36.5}{1.69}\\\Rightarrow I=21.6\ \text{kg m}^2

The wheel's moment of inertia is 21.6\ \text{kg m}^2

t = 60.6 s

\omega_i = 10.3 rad/s

\omega_f = 0

\alpha_2=\dfrac{0-10.3}{60.6}\\\Rightarrow \alpha_1=-0.17\ \text{rad/s}^2

Frictional torque is given by

\tau_f=I\alpha_2\\\Rightarrow \tau_f=21.6\times -0.17\\\Rightarrow \tau=-3.672\ \text{Nm}

The magnitude of the torque caused by friction is 3.672\ \text{Nm}

Speeding up

\theta_1=0\times t+\dfrac{1}{2}\times 1.69\times 6.1^2\\\Rightarrow \theta_1=31.44\ \text{rad}

Slowing down

\theta_2=10.3\times 60.6+\dfrac{1}{2}\times (-0.17)\times 60.6^2\\\Rightarrow \theta_2=312.03\ \text{rad}

Total number of revolutions

\theta=\theta_1+\theta_2\\\Rightarrow \theta=31.44+312.03=343.47\ \text{rad}

\dfrac{343.47}{2\pi}=54.66\ \text{revolutions}

The total number of revolutions the wheel goes through is 54.66\ \text{revolutions}.

3 0
3 years ago
An elephant kicks a 2.5 kg rock that is initially at rest. The
erma4kov [3.2K]

0.20Answer:

Explanation:

6 0
3 years ago
An apple is held completely submerged just below the surface of water in a container. The apple is then moved to a deeper point
Tresset [83]

Answer:

Explanation:

When the apple is held submerged in water , it experiences a buoyant force due to which it floats in water . One has to apply downward force to keep it submerged. The lower the buoyant force , lower the force needed to submerge it in water.

When apple is held at much deeper point , it experience greater pressure due to column of water around it . So its size or its volume decreases . But its weight remains the same . Due to less volume , buoyant force also decreases ( buoyant force is equal to weight of displaced volume of water. )

Due to buoyant force becoming less , force needed on apple  in downward direction will also be less.

4 0
4 years ago
Which of the following is most needed for cosmotologists to study the age of the universe
Hatshy [7]
If its not Distance traveled then its energy
5 0
3 years ago
Other questions:
  • The metric unit of force is the
    7·2 answers
  • The two blocks of masses M and 2M shown above initially travel at the same speed v but in opposite directions. They collide and
    8·1 answer
  • Calculate the inhomogeneity of a 1.5 t magnet
    15·1 answer
  • A delivery truck leaves a warehouse and travels 2.60 km north. The truck makes a left turn and travels 1.25 km west before makin
    6·1 answer
  • Calculating Displacement from the Area under a Curve Try Use the graph to answer the question What is the total displacement of
    8·1 answer
  • A(n) ______ is a gap in the geologic record where some rock layers have been lot because of erosion
    15·1 answer
  • What is something that claims to be science but is not?
    6·1 answer
  • PLEASE HELP ASAP A ball is rolling on a flat, frictionless surface. What will happen to the ball if no unbalanced force acts on
    11·1 answer
  • A student walks 3 north and 4 m west. The magnitude of the resultant displacement for the student is
    6·1 answer
  • Is kane brown a true country singer?<br> A.yes<br> B.no
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!